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Abstract

The behavior of the velocity gradient tensor, A 0 = Oui/Oxj, was studied using three

turbulent flows obtained from Direct Numerical Simulation. The flows studied were:

an inviscid calculation of the interaction between two vortex tubes, a homogeneous

isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each

flow was obtained when Aq was normalized with the mean strain rate. The case of

the interaction between two vortex tubes revealed a finite-sized coherent structure

with topological characteristics predictable by a Restricted Euler model. This struc-

ture was found to evolve with the peak vorticity as the flow approached singularity.

Invariants of Aq within this structure followed a straight line relationship of the form:

Aa + AQ + R = 0, where Q and R are the second and third invariants of Aij, and the

eigenvalue A is nearly constant over the volume of this structure. Data within this

structure have local strain topology of unstable-node/saddle/saddle. The character-

istics of the velocity gradient tensor and the anisotropic part of a related acceleration

gradient tensor His were also studied for a homogeneous isotropic flow and a tempo-

rally evolving planar wake. It was found that the intermediate principal eigenvalue

of the rate-of-strain tensor of His tended to be negative, with local strain topology of

the type stable-node/saddle/saddle. There was also a preferential alignment between

the equivalent vorticity vector and this intermediate principal eigenvalue direction.

The magnitude of His in the wake flow was found to be very small when data were

conditioned at high local dissipation regions. This result was not observed in the rel-

atively low Reynolds number simulation of homogeneous isotropic flow. A Restricted

Euler model of the evolution of Aq was found to reproduce many of the topological

features identified in the simulations.
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Chapter 1

Introduction

1.1 Background

Turbulence is one of the most complicated types of fluid motion. Turbulent flow is

generally random, disordered and unpredictable, yet it is governed by the Navier-

Stokes equations. Almost every fluid motion in nature, engineering applications,

and everyday life contains turbulence. The magnificent photosphere of the Sun, the

gigantic cloud systems that affect the Earth's weather pattern, the boundary layers

growing on aircraft wings, the wakes of submarines, the pouring of cream into a cup

of coffee, and the flight of a golf ball; all may contain turbulent motions.

In 1937, G. I. Taylor and T. Von K_rm_n[16] defined turbulence in the following

way:

Turbulence is an irregular motion which in general makes its appearance

in fluids, gaseous or liquid, when they flow past solid surfaces or even

when neighboring streams of the same fluid flow past or over one another.

Hinze[14] formulated a more precise definition of turbulence:

Turbulent fluid motion is an irregular condition of flow in which the various

quantities show a random variation with time and space coordinates, so

that statistically distinct average values can be discerned.
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According to Hinze, it is not sufficient to define turbulent motion as being irregular

in time alone, but in space as well. Therefore, it is impossible to describe turbulent

motion in all detail as a function of time and space coordinates. Instead, one has to

rely on laws of probability and statistics. It is important to note that for any study of

turbulence to be possible, one has to accept that no matter how confusing turbulence

is, it must still be governed by laws of physics.

1.2 Time-averaged turbulence models

In the time-averaged (Reynolds-averaged) description of turbulence, the number of

unknown variables is larger than the number of equations. At present, most turbulent

models rely on intuition, experience and dimensional analysis in an attempt to close

the system of governing equations.

Kline, Cantwell & Lilley[19] concluded that despite intensive computer-assisted

activity in turbulence research, none of the existing modeling methods could predict

a worthwhile range of perturbed shear layers with a constant set of empirical co-

efficients. Finding a "universal" turbulence model capable of predicting any flow to

acceptable engineering accuracy remains a challenge to research scientists world-wide.

Ferziger, Kline, Avva, Bordalo & Tzuoo[10] modified Kline's "zonal" modeling into a

framework for adjusting the coefficients of a chosen turbulence model from one part

of the flow to another. A zone is defined as a region in which a chosen turbulence

model will perform acceptably with a given set of coefficients, which may be func-

tions of local parameters rather than absolute constants. It is usually an identifiable

species of turbulent flow (e.g. boundary layer, wake or jet) or a strong perturbation

of a given species, such as a shock-wave/boundary interaction. Zonal modeling is

needed because current turbulent models cannot accurately simulate all the flows

with a single set of coefficients. One of the most widely used turbulent models today

is the "_ - ¢" model[26, 27]. Using transport equations for both the turbulent kinetic

energy _ and dissipation c, this model predicts some aspects of the behavior of tur-

bulent flows adequately within its assumptions. Many existing turbulent models are

variations of the "_ - _" model. The purpose of these models is to solve the Reynolds
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averaged Navier-Stokes equations in the hope of predicting the general behavior of

turbulent flows. This behavior depends strongly on the turbulent kinetic energy and

dissipation, the later being governed by the instantaneous velocity gradient Oui/Oxj

in the flow. A good understanding of this instantaneous velocity gradient tensor is

therefore essential to the studies of turbulence.

1.3 Motivation

Instantaneous velocity gradient tensor, defined as Ais = Oui/Oxj, in a turbulent flow

governs the behavior of the turbulent kinetic energy dissipation, _. The transport

equation for the turbulent kinetic energy is:

Dt -, OxkUk(p+qZ)--U_Uk-_Xk+U k Ox _ + OxiOxk] _, Ox-----j(-_Xj+-_Xi )"

(1.1)

q2 = uiui/2 is the turbulent kinetic energy while 7), P, V and _ are the convective

diffusion, production, viscous diffusion and mean rate of dissipation of turbulent

kinetic energy respectively.

Among these terms, ¢ is of the greatest interest since it is governed by the velocity

gradient tensor, Aij:

c = u-- + = uAij(Aq + Aji). (1.2)
OXj OXj OX i

Dimensional analysis is applied to the transport equation for turbulent kinetic

energy to obtain the relative scaling of A O. Both velocity fluctuation ui, and the

mean velocity U_, scale with the free stream velocity Uo. Using this velocity scale Uo

together with the mean flow length scale 6, the relative scaling of production P is:

0_ ~ --.U°_ (1.3)
7_ = uiu--¥Oxk 6

In most homogeneous shear flows, T' _ _. Hence,

¢ = uAij(d 0 + Aji) ~ U3° (1.4)
6"
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This relation implies that:

Therefore,

a,_~ R4/2•Go (1.6)

Dimensional arguments applied to the transport equation for turbulent kinetic energy

indicates that the instantaneous velocity gradient is larger than the mean gradient

Uo/(_ by at least a factor of Re_/2.

In addition to dissipation, velocity gradient tensor also governs the behavior of

vorticity wi in turbulent flows:

Cdi : QjkAkj, (1.7)

where eijk is the alternating unit tensor such that:

+1; if ijk are in cyclic order 123123
eijk = -1; if ijk are in anticyclic order 321321 (1.8)

0; otherwise

Figure 1.1 shows a contour plot of iso-enstrophy (magnitude of vorticity) surfaces

in a direct numerical simulation of an evolving planar wake[30]. Free stream flows

from left to right, as indicated by the arrow. A cross section (y-z plane) is cut

across the x-axis to illustrate the microscale regions. Figure 1.2 shows the contour

plots of enstrophy and dissipation along this cross section, looking along the flow

direction. The highest contour is indicated in bright red. It is observed that the

highest intensities of both vorticity and dissipation (hence velocity gradients) occur

in regions with very small length scale compared to the mean flow.

1.4 Previous studies of the velocity gradient ten-

sor

A considerable amount of research has been directed at understanding the instan-

taneous velocity gradient in turbulent flows. Large instantaneous velocity gradients
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Y

Z
X

Figure 1.1: Contour plot of iso-enstrophy surfaces in an evolving plane wake. -+

indicates free stream flow direction.
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(a)

(b)

Figure 1.2: y-z plane in the evolving planar wake showing contour plots of (a) local

eustrophy density. (b) dissipation.
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usually occur in small-scale structures whose characteristic length scales are much

smaller than the mean flow, as shown in figure 1.2.

Recent studies of small-scale structures using direct numerical simulations (DNS)

and laboratory experiments suggested common behavior in the small scale velocity

gradients; even when the large-scale motions are very different. Ashurst, Kerstein,

Kerr & Gibson[l] studied the behavior of the velocity gradient in an incompressible,

isotropic homogeneous flow in a periodic box by analyzing the velocity gradient ten-

sor (each tensor consists of nine components of Oui/Oxj) at each grid point in the

flow. The study was done using direct numerical simulation, with Taylor microscale

Reynolds number Re:_ _ 83. By looking at the probability distribution function of the

cosine of the angle between the vorticity vector and the three principal eigenvectors

of the rate-of-strain tensor (the symmetric part of the velocity gradient tensor), they

concluded that there was a strong preferential alignment of the vorticity vector with

the intermediate eigenvector. This same conclusion was also reached by studying an

incompressible homogeneous shear flow with similar Reynolds number. They also

found that the principal eigenvalues of the rate-of-strain tensor (sorted in descending

order such that a > 13 > "y) have a preferred ratio of a : 13 : 7 _ 3 : 1 : -4 in regions

of high dissipations.

Vincent & Meneguzzi[35] performed a direct numerical simulation of a homo-

geneous isotropic turbulence at a higher Reynolds number, with Re), ._ 150 and

ReL ._ 1000. Visualization of the flow field at different times showed that the strongest

vorticity in the flow was organized in very elongated thin tubes, in agreement with

the findings of Ruetsch & Maxey[29] in a similar flow with Re_, ._ 60. Vincent &

Meneguzzi also concluded from this study that there is a preferential alignment of

the vorticity vector with the intermediate principal eigenvector of the rate-of-strain

tensor.

Soria, Sondergaard, Cantwell, Chong & Perry[31] studied the dissipating motions

of an incompressible mixing layer with both laminar and turbulent initial conditions,

at Re_ ._ 250. Their results showed that regardless of initial conditions, the bulk of

the total kinetic energy dissipation is contributed by fluid structures with local strain

rate topology characterized as unstable-node/saddle/saddle (a > B > 7;/3 > 0).
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Blackburn, Mansour & Cantwell[2] investigated the topological features of the

velocity gradient field in turbulent channel flow. The Reynolds number of this simu-

lation was Re = 7860, based on half channel width and the center-line velocity. In all

regions of the flow, there was a strong preference for the vorticity to align with the

intermediate principal eigenvector of the rate-of-strain tensor. Away from the wall

regions, the intermediate principal eigenvalue of the rate-of-strain tensor (these prin-

cipal eigenvalues are also known as strain rates) tends to be positive at sites of high

viscous dissipation of kinetic energy. The velocity gradient tensor also showed pref-

erence for local flow topologies of unstable-node/saddle/saddle. They also used the

discriminant of the velocity gradient tensor to identify flow structures which extends

from very close to the wall to the free stream.

Tsinober, Kitt & Dracos[32] conducted laboratory experiments on turbulent grid

flows and on the turbulent boundary layer over a smooth plate. To determine the

invariant properties of the flows, all nine components of the velocity gradient tensor

at every grid point in the flow were measured using a hot wire probe. In both flows,

the probability density distribution of the alignment angle between the vorticity and

the three principal eigenvectors of the rate-of-strain tensor was determined. As in

the DNS studies mentioned above, they confirmed that there was a strong tendency

for the vorticity to align itself with the intermediate eigenvector of the rate-of-strain

tensor.

The DNS and experimental studies mentioned above demonstrated that small-

scale motions exhibit common behavior even when the large-scale motions of various

homogeneous turbulent flows are different. An analytical model capable of predicting

the behavior of these small-scale motions would be very useful. To find such a model,

an understanding of the behavior of the velocity gradient tensor in turbulent flows is

essential. Jim@nez[15] suggested a model which described the vorticity distribution of

a stretched vortex tube. Using this model, Jim_nez was able to explain the observed

preferential alignment of the vorticity vector with the positive intermediate principal

eigenvector of the strain-rate tensor using purely kinematic arguments. Girimaji &

Pope[ll] modelled the velocity gradient as a diffusion process. Using a stochastic
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model by following fluid particles in incompressible, homogeneous isotropic turbu-

lence, they reproduced one-time and two-time statistics in good agreement with those

obtained from full turbulence simulations. Cantwell[4] derived an analytical solution

to the Restricted Euler equation, first studied by Vieillefosse[33, 34]. The asymptotic

solution reproduced the observations found in direct numerical simulations of turbu-

lent flows: two of the principal eigenvalues are positive, and the vorticity vector aligns

with the intermediate principal eigenvector exactly. Girimaji _z Speziale[12] analyzed

a modified version of the Restricted Euler equation numerically by including the ef-

fects of the mean velocity gradient tensor. This model preserved the balance of mean

momentum for most homogeneous turbulent flows with mean velocity gradients.

1.5 Classification of local flow topology

Many studies of turbulent flows have been performed recently. Vast quantities of data

have been collected either using sophisticated laboratory instruments or generated by

computer simulations. With so much information available, the need for a systematic

and efficient way to analyze these data is crucial. Classification of local flow topol-

ogy in turbulent flow, using critical point theory as described by Chong, Perry &

Cantwell[8] is one of the best ways to analyze the large amounts of data associated

with these studies. A critical point is a point in the flow field where all three velocity

components are zero and the streamline slope is indeterminate. The flow topology at

each point in the flow may be accessed from the viewpoint of an observer travelling

with the local velocity of the flow. For such an observer, each point is a critical point,

and the topology can be categorized accordingly. In addition to Chong et al., Soria et

el.[31], Sondergaard[30], Chen et a/.[7], Blackburnet al.[2] and others have also given

insightful descriptions of the various classifications of local flow topologies in different

types of turbulent flows.

Most of the results in this thesis will be expressed in terms of local flow topolo-

gies. Therefore, the basic definitions and physical interpretations of the various flow

topologies will be briefly described in the following sections.
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1.5.1 Invariants of the velocity gradient tensor

A vector field ff -- ul(xl,x2, xa),u2(xl,x2,x3),ua(xl,x2, xa), is linearized about a

critical point O, i.e., _7(O) = 0. (x_, x_, x_) are the coordinates measured relative to

the point O. Assuming that a Taylor series expansion can be carried out about the

point O

_=A._+... =

all a12 a13

a21 a22 a23

a31 a32 a33

!

x 2

!

X3

+higher order terms. (1.9)

A = A 0 = Oui
= Oxj o"

(1.10)

Since ,7 is the velocity field, Aij is the velocity gradient tensor at the point O. The

three eigenvalues, A, of A are obtained as solutions of the characteristic equation

Aa + PA 2 + QA + R = O.

P, Q and R are the tensor invariants of A.

(1.11)

1.5.2 General three-dimensional flows

The definitions of these tensor invariants for general three-dimensional flows are given

by:

P = -Aii -- -trace[A].

1

Q = _(p2 _ trace[A2]).

= I(-P 3 + 3PQ - trace[Aa]) = -det[A].R
o

(1.12)

(1.13)

(1.14)

The characteristic equation has three different combinations of roots, (1) all real

roots which are distinct, (2) all real roots where at least two of them are equal, or (3)

one real root and a conjugate pair of complex roots.

In P-Q-R space, the surface which divides the real solutions from the complex

solutions is given by

27R 2 + (4P a - lSPQ)R + (4Q a - p2Q2) = O, (1.15)
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where terms have been gathered to form a quadratic equation in R.

Chong et al.[8] gave very detailed descriptions of different types of critical points

depending on the location of the invariants in the P-Q-R space.

1.5.3 Incompressible three-dimensional flows

The definitions of the three invariants for incompressible flows are much simpler due

to the incompressibility condition, which forces the trace of the velocity gradient

tensor, A, to zero. This condition greatly simplifies the expressions of the various

invariants:

P =-Aii = -trace[A] = O.

1 (trace[A2]) = 1
Q = --_ -_AimAmi.

R=__(trace[d3])=_det[A]= 1--_ AimAmk Aki.

(1.16)

(1.17)

(1.1S)

Because the first invariant P is now zero for incompressible flows, the local flow

geometry is completely determined by the location of the second and third invariants

of the velocity gradient in the two-dimensional Q-R space.

The surface that separates real eigenvalues from complex eigenvalues now reduces

to a curve given by:

D = (27/4)R 2 + Q3 = 0. (1.19)

The value of the discriminant, D determines the nature of the eigenvalues of A. When

D > 0, A has one real and two complex eigenvalues. D < 0 implies that A has three

distinct, real eigenvalues. When R = +(2v/-3/9)(-Q) 3/2 and D = 0, A has three

real eigenvalues, two of which are equal. The curve D = 0 acts as a dividing line

which separates solutions with three real eigenvalues from those with one real and

two complex conjugate eigenvalues.

The curve D = 0 and the Q axis separate the Q-R space into four regions. Fig-

ure 1.3 illustrates the different topologies in these four regions:

1. above the dividing curve and to the left of Q axis, the local flow spirals in

towards the local origin in a plane and then flows out along the third direction.

This local flow geometry is referred to as stable-focus/stretching.
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Stable-

focus/stretching

_1"Stable-node/
J saddle/saddle

Unstable-

focue/compressing

(-Q)

Unstable-nod_,.,_

saddle/saddle

R

Figure 1.3: Three dimensional topologies in Q-R (P -- 0) invariant space

2. above the dividing curve and to the right of Q axis, the local flow approaches

the origin along one axis and spirals out in a plane. This local flow geometry is

referred to as unstable-focus/compressing.

3. below the dividing curve and to the left of Q axis, the local flow approaches

the origin along two axes and flows outward along the third. This local flow

geometry is referred to as stable-node/saddle/saddle.

4. below the separator and to the right of Q axis, the local flow approaches the

origin along one axis and flows outwards along the other two. This local flow

geometry is referred to as unstable-node/saddle/saddle.

1.5.4 Construction of a typical Q-R invariant plot

Figure 1.4 illustrates a typical Q-R plot obtained for a direct numerical simulation

of incompressible, homogeneous isotropic flow. At one instant in the simulation, the

values of Q and R at each grid point are calculated using the definitions given in the
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Figure 1.4: A typical contour plot of joint pdf of Q vs R.

previous section and cross-plotted to the Q-R space. This process is repeated for all

grid points in the whole flow. Figure 1.4 plots the contours of the number density of

points lying within a unit area in the invariant space. Logarithmic contour levels (1,

10, 100 etc.) are chosen due to extreme variations of the number density that occurs.

In this way, isolated points far from the origin corresponding to the largest gradients

in the flow (which occur in the smallest-scale structures) are captured with contour

level of 1. At the same time, information about the distribution of invariants near the

origin corresponding to intermediate-scale and large-scale structures is also provided

by the higher contour levels. This invariant plot becomes the joint probability density

function (pdf) between Q and R when the contour levels are normalized by the total

number of data points in the plot.
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1.5.5 Invariants of the rate-of-strain and rate-of-rotation ten-

sors

Any velocity gradient tensor Aq may be decomposed into the rate-of strain tensor S

and the rate-of-rotation tensor W. The components of S and W are defined as :

Sq = (Aij + Aj,)/2. (1.20)

W 0 = (Aij - Aji)/2. (1.21)

Considering only incompressible flows, the invariants for S and W are :

Ps = -Sii = -trace[S] = 0. (1.22)

1 1 2
Q_= -_ &ms._,= -_trace[S ].

Rs = -_SimSmkSki = 1 a-gtr_ce[S].

P_ = -W. = -trace[W] --- O.

Q_ = --1W'mWm'2= --_trace[w2]

(1.23)

(1.24)

(1.2_)

(1.26)

1

P_ -- -_WimWmk Wki -- O. (1.27)

The invariants of the velocity gradient tensor are related to the invariants of the

rate-of-strain and rate-of-rotation tensors in the following ways:

Q = Qs + Q,,. (1.28)

R = R, - Wi, WmkSk_. (1.29)

Since S is a symmetric tensor, all the eigenvalues of S must be real. Therefore,

all the data points must lie below the discriminant curve Ds = (27/4)R 2 + Q_ = 0 in

the Q,-Rs invariant space.
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1.5.6 Physical meanings of various invariants

The invariants obtained from the A, S and W tensors have direct implications for the

fluid flows. In addition to classifying the local flow fields as observed by an observer

travelling with the fluid, these invariant plots also reveal physical information about

the flow:

1. the second invariant of S, Qs, is directly proportional to the local dissipation.

(1.30)

Points with large negative values of Qs correspond to high dissipation regions

in the flow.

2. the second invariant of W, Qw, is the magnitude of the vorticity squared, also

known as the local enstrophy density.

1 W.
Qw = -_Wim mi = wi_z_. (1.31)

Points with large Qw have high enstrophy density.

3. the difference between the third invariant of the rate-of-strain tensor and the

third invariant of the velocity gradient tensor, (Rs - R), reveals information

about the vortex stretching rate, a.

(Rs - R) = WimW,_kSki = a. (1.32)

Information regarding the physical flows can therefore be obtained by inspecting

the invariant plots. If Q is large and positive, the local enstrophy density is large

and dominates the local dissipation (Q_ >> Qs), as in the case of solid body rotation

near the center of a vortex tube. On the other hand, when Q is large and negative,

the local dissipation is large and dominates the local enstrophy density (Qs >> Qw),

as found in flows with pure straining. Finally, when (Qs _. Qw), the local dissipation

and local enstrophy density are comparable in magnitude, as found in vortex sheets.
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1.6 Outline of thesis

The main objective of this thesis is to study the characteristics of the velocity and

acceleration gradient tensors in one inviscid flow simulation and two viscous flow

simulations. The inviscid flow is chosen because it exhibits behavior consistent with

the Restricted Euler model of the evolution of A_j. All the flows studied in this thesis

are obtained from direct numerical simulations, where the Navier-Stokes equation is

solved exactly using "spectral" methods. There is no attempt to model any unresolved

scales in these simulations.

Chapter 2 describes the Restricted Euler equation and its analytical solution.

The definition of the acceleration gradient tensor, which governs the behavior of

the velocity gradient tensor, is presented. A velocity gradient tensor with random

components obtained from a Gaussian distribution with zero mean and unit variance

evolving with the Restricted Euler model is also discussed.

Chapter 3 analyses the local flow topologies of an incompressible Euler calculation

of two interacting vortex tubes simulated by Kerr[17]. Figure 1.5(a) depicts the

domain surrounding the peak vorticity in this flow. Different regions with interesting

local flow topologies are identified.

Chapter 4 describes the numerical approach used by the author to perform a direct

numerical simulation of a homogeneous isotropic flow. A contour plot of iso-vorticity

surfaces of this simulation is shown in figure 1.5(b). The behavior of the velocity and

acceleration gradient tensors in this flow is analyzed using classification of local flow

topologies.

Chapter 5 presents the results obtained from a simulation of a temporally evolving

plane wake generated by Sondergaard[30]. Behavior of the velocity and acceleration

gradient tensors in this relatively higher Reynolds number simulation is compared

and contrast with results obtained from the homogeneous isotropic flow. A general

view of this flow has been shown in figure 1.1.

Chapter 6 gives the major conclusions and outlines some recommendations for

future studies.
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Figure 1.5: Contour plots of iso-enstrophy surfaces. (a) Inviscid calculation of in-

teraction between two vortex tubes. (b) Homogeneous isotropic flow in a periodic
box.
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Chapter 2

Equations for the velocity gradient

tensor

2.1 Introduction

Ashurst et a/.[1] examined the statistical properties of the velocity gradient tensor

in a forced isotropic turbulence and in a homogeneous shear flow, using DNS. They

observed that there is a strong tendency for the velocity gradient tensor to approach

a state where two of its principal rates-of-strain are positive while the remaining one

is negative. There was also a preferential alignment between the vorticity vector and

the intermediate principal eigenvector of the rate-of-strain tensor. Both tendencies

became more pronounced when data were conditioned at higher dissipation regions.

Similar observations were also reported in other studies of homogeneous turbulent

flows.

To understand the behavior of velocity gradient tensor Aij = Oui/Oxj, the trans-

port equation for Aij needs to be studied closely. The derivation of this transport

equation is described below.

The incompressible Navier-Stokes equations:

Oui Oui Op O_ui
-- + uk -- + 9-- (2.1)
Ot Oxk Oxi OXkOXk

19
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are differentiated with respect to xj leading to

OAij Aij 02P v 02A_j
Ot + Uk-_Xk + AikAkj -- + • (2.2)OXiOXj OxkOxk

For incompressible flow, Aii= 0. Therefore, the pressure is given by taking the

trace of the above equation:

Aik Aki - 02p
OxkOxk " (2.3)

Subtracting equation 2.3 from equation 2.2 yields

OAij uk OAij+ _ + AikAkj - AkmAmk = Hij (2.4)

where _ij is the Kronecker delta, and

( 02p c32p _3j) 02AijHis = - \ O_iOxi Ox--_x, + u OXkOZk"
(2.5)

The His tensor is composed of the cross derivatives of the pressure field and the

viscous diffusion of the velocity gradient tensor. This Hij tensor shall be termed the

"acceleration gradient tensor" in the rest of this thesis, even though it is not the true

acceleration gradient tensor. A true acceleration gradient tensor,/:/_j can be derived

by expanding a vector field at a critical point using a Taylor series, the same way as

the velocity gradient tensor Aij was derived in equation 1.10.

dxi

dt ui. (2.6)

Differentiating this equation with time t, and using equation 2.1:

_xi dui Op 02ui

dt 2 - dt - Oxi +_OXkOX-------_k--ai. (2.7)

Therefore, true acceleration gradient tensor

Oa____i= [-I_¢ - 02P 02AiY (2.8)
Ozj OxiOz_ + "OzkOz---------kk"

Close inspection of the true acceleration gradient tensor reveals that /2/_j is almost

identical to H_j, except that Hij has been forced to be trace-free, which makes the
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analysis of this tensor easier. Therefore, H_j is essentially the an-isotropic part of the

true acceleration gradient tensor. The behavior of this Hij tensor will be discussed

in later chapters.

The evolution equations for the invariants of the velocity gradient tensor are de-

rived by forming the appropriate double and triple products with equation 2.4 and

taking the trace:
dQ
d---t+ 3R = -AikHki, (2.9)

dR 2
Q2 = -AinA,_mHmi. (2.10)

dt 3

2.2 The Restricted Euler model

Cantwell [4] analyzed the homogeneous case with H 0 = 0, which will be referred

to as the Restricted Euler model for Aij. This equation was first studied by Vieille-

fosse [33, 34]. Setting Hij = 0 converts equation 2.4 into a system of coupled ordinary

differential equations (ODE) for all nine components of Aij(t). Under this assump-

tion, the velocity gradient tensor of a fluid particle evolves independently of other

particles in the flow since the effects of the pressure and viscosity have been removed

from the governing equation. This system of ODE's was solved analytically. A brief

description of the derivation of this analytical solution is presented below.

Given an initial velocity gradient tensor, Aij, its discriminant D is related to its

second and third invariants such that:

2D = Q3 + 4 = Q_ + R_ = Q3o. (2.11)

The quantities Qi and P_ are the initial values of Q and R respectively. Qo is the

value of Q when R = 0 and it is used to define the time scale for the evolution of

Aij(t)

to= Qo#O
1 .

,/-_, Qo = o

All relevant variables are non-dimensionalised by to:

(2.12)

q = Qt2o, r = Rt3o, a O = A2jt2o, T = t/to (2.13)
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and equation 2.11 becomes:

where

27r2 q3
4 + = sgn(Qo) (2.14)

+1;
sgn(Qo) = -1;

O;

Qo>O

Qo<O

Qo = o

(2.15)

2.2.1 Analytical solutions of q(T) and r(T)

By setting H_j = 0, the non-dimensionalised forms of the coupled ordinary differential

equations 2.9 and 2.10 become:
dq
d-_ = -3r. (2.16)

dr 2 2
= _q. (2.17)

Solutions to equations 2.16 and 2.17 are expressed in Jacobian elliptic integrals of

the first kind, F(¢, k), and the cosine amplitude function, cn, where

L* ds ; cos(C) = cn(F). (2.18)F(¢, k) = _/1 - k 2 sin 2 s

The solutions depend on Qo.

• Qo>O

q+(7-) =
(1 - v_) - (1 + v_)cn[(2/3_/4)7-].

1 - cn[(2/31/4)T]
+ (2.19)0 < 7- < Trnaz.

r+(7) = 7_---'_(1--q(T)3);

+ /2)4F (_,7-._ = (3i/4

0<7-<7 -+
7"/'ta.T"

sin(57r/12)) .

(2.20)

(2.21)

.Qo<O

-(1 + V'_) + (1 - x/3)cn[(2/3x/4)7-].

q-(7-) = 1- cn[(2/31/4)7-] , 0 < v < 7-_z- (2.22)
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r-(T)=_4(--1--q(_-)3); 0<3-< 7ma x. (2.23)

(2.24)

• when Qo = 0, the solutions depend on the initial value of r as well.

1. r(0) < 0,

2. _(0)> 0,

q°(_) ( 1 ) 2=-- ; 0 < _" < oo.
1+ (1/v_)_

_0(_)_ "'-'_'_ ; 0 < _ < oo.

1- )2.- (ff )q0(_)= 1- __ , o < _ < v_.

3v_ 1-(1-/v_)7" ; O<_-<v'3.

(2.25)

(2.26)

(2.27)

(2.28)

2.2.2 Analytical solution of aij(3-)

A second order differential equation for a_j can be obtained by differentiating equa-

tion 2.4 with respect to t and expressing the resultant equation in non-dimensional

form:

d2 aij 2

d__---_ + -_q(T)aij ---- O. (2.29)

Since the solution for q(T) is in terms of the Jacobian elliptic integrals, the determina-

tion of the exact expression for aii (7) is complicated. Fortunately, r(3-) is a monotonic

function of 3-. Expressing q as a function of r using the relationship in equation 2.14,

and replacing the independent variable from _- to r yields:

daij 2
4r--_- r + -_a 0 = O. (2.30)

The dependence of aij on _- is now assumed implicitly by the variable r(7).

The solution of equation 2.30 is expressed in the simple form:

aij(r) = C_ffl(r) + D#f2(r). (2.31)
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f1(r) is an even function of r and f2(r) is an odd function of r. Cij(r) and Dij(r) are

matrix constants of integration determined by initial conditions.

The solutions of fl(r) and f2(r) are again dependent on the initial value of Qo:

• Qo > O,

• Qo<O,

• Qo=0,

:]f+(r)= _ (1+ r) U3 + (1 3 r)U3

=1 _?_r)1/3]f_(,-)_ [(1+-_-r)V3-(1-

(2.32)

(2.33)

_t_- [(3_/2)T]} (2.34)

f_(r) ---- (2/x/3) (1+ 2---_r2) U6sin { ltan-l[(3x/_/2)r] }3

f°(r) = 2x/a[(3v_/2)r]-Z/3

f°(r) = (22/3/3v/3)[(3v/-3/2)r] 1/3

(2.35)

(2.36)

(2.37)

The solutions for Cij(r) and Dij(r) are expressed in terms of ÷, &ij and d(z/dr,

which are the initial values of r, aij and daij/dr respectively:

Cij = aij[q(r)]2(_r )e + (3 (tzikakj) + q(P)Sij) f20:)

3 q(?)5#) f_(_)

(2.38)

(2.39)

2.2.3 Numerical procedure in obtaining Aij(t)

In summary, given an initial velocity gradient tensor, A#, the analytical expression of

this tensor evolving with the Restricted Euler model after time t can be determined

using the following procedure:

1. Obtain the characteristic time scale, to from equation 2.12.
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2. Non-dimensionalize the velocity gradient tensor and its invariants by to, giving

5q(r), _(r) and P(r).

3. Determine r from _(r) from the inverse of equation 2.19, 2.22, 2.25 or 2.27,

depending on sgn(Qo)and ÷(r).

4. Add the non-dimensionalised time increment Ar = t/to to the calculated r.

5. Obtain the new values of q(r) and r(r) from equations 2.19 to 2.28.

6. Determine fl(r) and f2(r) from equations 2.32 to 2.37, depending on the value

of r(r).

7. Get the derivatives of fl(r) and f2(r) by differentiating equations 2.32 to 2.37

analytically.

8. Obtain Cij and Dq from the initial values of ÷, q(÷), fl(_), f2(÷) and their

derivatives.

9. Calculate the final velocity gradient tensor aij from equation 2.31.

10. If dimensional final velocity gradient tensor is desired, divide the calculated

velocity gradient tensor by its own initial characteristic time scale, to.

2.2.4 Asymptotic solution of aij(T)

The asymptotic form of aij as r -9 co can be expressed as :

lim aq(r) _- Ki_r(r) 1/3. (2.40)

r(r) is a function that becomes singular in finite time.

Kit satisfies the algebraic equation

1

KimKrnj -1- _-_Kij - 21/3(_ij _-- O. (2.41)

The invariants of Kij can be derived using equation 2.41 and the continuity con-

straint to be:
3

P(Kij) = 0.0; Q(Kij)= 2-_-fi; R(Kij)= 1.0. (2.42)
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Notice that the second and third invariants of K 0 tensor lie on the boundary of

the dividing curve since Q(Kij) and R(K_j) satisfy the equation:

27R2 Q3
-_- + =0. (2.43)

The K u tensor can also be written as the sum of a symmetric tensor and an

anti-symmetric tensor:

Kij = S, jlk + Wolk, (2.44)

where

and

Sulk 0 0

0 S221k 0

0 0 --Slllk-S22ik

(2.45)

0 -£31k f_21k

W,¢l_= _1_ 0 -_11_ (2.46)

-f_21k £zllk 0

Substituting the components of K 0 into equation 2.41 produces nine equations, which

are used to solve for Sijlk and £_{Ik. The solutions exhibit the same topological

characteristics seen in direct numerical simulations, namely: (1) the intermediate

strain rate S221k must be non-negative, and (2) the vorticity vector must align with

this intermediate strain rate.

Since Q = Q_ + Qw = -3/22/3 for the K 0 tensor, there exists a linear relationship

between Q,(Kij) and Q,_(Ko) such that:

3

-Qs(Kij) = Qw(K O) + 22/----_. (2.47)

Other relevant relationships between various invariants of Kij tensor are:

1 1

Rs(Kij) -- 21/3 Q_(Ki¢) 2" (2.48)

and
1

Q,,,(Ko) = 2-_/3(Rs(Ko) - R(K_j) ). (2.49)

Figures 2.1 (a-d) depict the relationships between the different invariants of the K 0

tensor. In figure 2.1(a), all the asymptotic solutions collapse into a single point with
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Qs(Kij)
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(a) (b)
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Qw(Kij)
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Rs(Kij)-R(Kij)

(c) (d)

Figure 2.1: Relationships between invariants of Kij tensor. (a) Q vs R. (b) Q_ vs Rs.

(c) -Qs vs Qw- (d) Qw vs (R_- R).
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Q(Kij) = -3/22/3 and R(K/j) = 1.0 -- regardless of initial condition. Figure 2.1(b)

shows the linear relationship between Qs(Kij) and Rs(Kij). Notice that since Q_(Kij)

and Rs (K/j) also satisfy the characteristic equation:

,Xa + ,XQs(gij) + R,(K/j) = 0; A = 2 -1/3 (2.50)

the straight line osculates the dividing curve at a single point where Qs(Kij) =

-3/22/3 and R_(Kij) = 1.0. Figures 2.1(c-d) plot the linear relationships derived

in equations 2.47 and 2.49.

2.3 Gradient tensor

Euler model

evolving with the Restricted

The behavior of a velocity gradient tensor evolving with the Restricted Euler model

was observed. The components of this velocity gradient tensor were generated with

random numbers of Gauss/an distribution with zero mean and unit variance. The

trace of this tensor was forced to zero to satisfy the continuity constraint of an in-

compressible flow. In a homogeneous isotropic flow, the volume integral of the second

invariant Q is zero due to the balance of pressure gradients acting on the surface of

a control volume:

Therefore, the velocity gradient tensor was required to satisfy this condition as well.

To satisfy both conditions, the velocity gradient tensor Aii is constructed from:

A/j = Sij + W/j, where Sij is a symmetric tensor and Wij is an anti-symmetric tensor.

The components of both Sij and W/j tensors are obtained from the random number

generator xi with mean E(x) = 0 and variance a 2 = 1.0. The components of Sij and

Wi._ tensors are:

1

$11 = zl - _(zl + z2 + z3),
1

$22 = z2 - _(zl + z2 + z3),
1

$33 = z3 - _(zl + z2 + z3),
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$12 = $21 = X4,

S13 = _31 "-- X5,

$23 _-_ $32 : X6,

_=W22=W33=O,

W12 -- -W21 = _/r_XT,

W13 = -W31 = V_-/3zs,

W23 = -W32 = V/4-/3xg. (2.52)

xl,x2,... ,x9 are nine different random numbers obtained from the random number

generator. The factor _f4-/3 is necessary to force the expected value of the second

invariant Q of the Aij tensor to zero. The derivation of this factor is explained in

Appendix A.

The analytical solution of this tensor evolving according to the Restricted Euler

model after time t is obtained using the procedure described in the previous section.

This process is repeated for 105 data points to obtain the probability density dis-

tribution. The results are presented in the form of the local topologies, assuming a

hypothetical "flow" where every initial component of the velocity gradient tensor has

a Gaussian distribution slightly modified to satisfy the constraints described.

2.3.1 Evolution of aij

Figure 2.2 shows the relationship between the second and third invariants of the

velocity gradient tensor, Q and R, after evolving for time t. The velocity gradient

tensor and all its invariants have been non-dimensionalised by the characteristic time

scale defined in equation 2.13. Figure 2.2(a) shows that all the data points collapse

onto three curves, depending on the discriminant of each velocity gradient tensor.

Positive initial discriminants were all normalized into a single value of +1, lying

above the dividing plane which separates those tensors with all three real principal

eigenvalues from those with complex eigenvalues. This positive discriminant of +1
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curve crosses the Q-axis at a maximum of 1.0. This is the result of the normalizing

factor, which is defined to be the value of Q at R -- 0. On the other hand, all the

negative initial discriminants were normalized into a single value of -1, thus lying

below the dividing curve. These tensors have three real principal eigenvalues. Velocity

gradient tensors with discriminant of exactly 0 (which are extremely rare) satisfy the

characteristic equation exactly. Therefore, these points will lie exactly on the dividing

curve. Data points are evenly distributed on both sides of the Q-axis since all the

data were generated randomly. Figure 2.2(b) shows the distribution of the invariants

after evolving for t -- 2.0. There is an obvious shift of data points towards positive R

along their respective discriminant curves, due to the monotone relationship between

R and t. The velocity gradient tensor evolves with increasing R until the solution

becomes singular in finite time. Figures 2.2(c) and 2.2(d) illustrate the analytical

solutions to the Restricted Euler model after evolving for t = 5.0 and t -- 10.0. Most

of the data points have now migrated towards the lower right quadrant of the Q-R

plot, where their solutions ultimately become infinite.

2.3.2 Evolution towards the asymptotic solution

The evolution of the velocity gradient tensor towards the asymptotic solution is illus-

trated in figures 2.3 to 2.6. These figures depict the evolution of the initially random

velocity gradient tensor shown in figure 2.2, normalized by the characteristic time

scale and local R 1/3.

Figure 2.3(a) shows Q and R at initial time t = 0. All the data points collapsed

into a single vertical line, parallel to the Q-axis and cutting the R-axis at the value

of R = 1.0 since every tensor has been normalized by its own third invariant, R.

However, the values of Q for this initial data set are not restricted. Hence the data

points span along the vertical line for all values of Q. Figures 2.3(b-d) show the

evolution of this data set after time t = 5.0, t -- 10.0 and t = 20.0. In addition to

having a unique value of R = 1.0, the data points converge slowly to the asymptotic

value of Q -- -3/22/3 as the tensors evolve in time. This behavior was predicted by

the asymptotic solution derived for the Kij tensor in equation 2.42.
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Figure 2.2: Time evolution of Q vs R. A_j normalized by local discriminant so that

all data points must lie on three separate curves with discriminant D = -{-1, D -- 0

or D =-1. (a) t-0.0. (b) t=2.0. (c) t=5.0. (d) t=10.0.
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The invariant plots of Qs vs Rs at t -- 0.0, t -- 5.0, t = 10.0 and t = 20.0 are

shown in figures 2.4. Initially, the data points distribute evenly below the dividing

curve (the rate-of-strain tensor is symmetric and so all principal eigenvalues are real).

However, for any velocity gradient tensor such that Rs is close to R (for example, a

symmetric velocity gradient tensor), normalizing the velocity gradient tensor by R 1/3

forces Rs to 1.0. The consequence of this appears on the plot as a subtle structure

near the vertical line at R, - 1.0. The data points approach the asymptotic solution

described in equation 2.48 as time increases. Figures 2.5 and Figures 2.6 show the

time evolution of -Qs vs Q_ and Qw vs (Rs - R) respectively. Notice that the data

points in figure 2.6(a) do not distribute evenly about the (Rs - R) = 0 axis. There is

a structure along the R_ - R = -1.0 vertical line because R has been normalized to

1.0.

2.3.3 Evolution of dimensional Aij

Figures 2.7 to 2.10 show the evolution of another set of random initial velocity gradient

tensors. Every velocity gradient tensor in this set of data was normalized by the initial

mean discriminant of the whole flow field of N total number of data points such that:

Aij = A'_j,/D 1/6, D= _ Dn/N, D= R 2+Q3. (2.53)
n=l

A_j is the initial velocity gradient tensor obtained from equation 2.52. The final

velocity gradient tensor was obtained in the same way as described in the earlier

section. However, each velocity gradient tensor was made dimensional by its own

initial characteristic time scale to (refer to equation 2.12) to obtain the dimensional

velocity gradient tensor, Aij. The results are shown in figures 2.7 to 2.10.

Figures 2.7(a-d) show the contour plots of the joint pdf of Q vs R at four differ-

ent times. At initial time t = 0.0, the contour plot shows that the data points are

distributed fairly evenly on both sides of the Q-axis. However, due to the random

way in which the velocity gradient tensors were constructed, tensors with complex

principal eigenvalues (in which case the data points will lie above the dividing curve)

out number those tensors with all three real principal eigenvalues (which lie below the
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Figure 2.3: Time evolution Q vs R. Aij normalized by local discriminant and local

R 1/3 so that all data points must lie on the line R = 1.0. (a) t=0.0. (b) t=5.0.

(c) t--10.0. (d) t=20.0.
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Figure 2.4: Time evolution of Qs vs Rs. Ai3 normalized by local discriminant and

local R 1/3. (a) t=0.0. (b) t--5.0. (c) t=10.0. (d) t-20.0.
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Figure 2.5: Time evolution of -Q_ vs Qw. Aij normalized by local discriminant and

local R U3. (a) t--0.0. (b) t--5.0. (c) t-10.0. (d) t-20.0.
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Figure 2.6: Time evolution of Q= vs (R_ - R). Aij normalized by local discriminant

and local R _/3. (a)t=0.0. (b)t-5.0. (c)t--10.0. (d)t=20.0.
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boundaries below the dividing curve). Figure 2.7(b) shows a very interesting result.

There is an obvious shift of the data points toward the lower right quadrant. The

overall structure is remarkably similar to the one obtained from the direct numerical

simulation of a viscous, homogeneous isotropic flow shown in figure 4.8(d). The impli-

cation is that even though the Restricted Euler model is based upon the assumptions

that the effects of both the viscosity and the off-diagonal pressure may be neglected,

the solution may still be applicable in certain regions of a real flow. However, the

presence of the viscosity in real flow tends to prevent the flow field quantities from

becoming singular. In this solution, the bulk of the data shifts slowly towards the

lower right quadrant of the Q-R plot as time increases.

The contour plots of the joint pdf between the second and third invariants of the

symmetric tensor of this data set are shown in figure 2.8. At initial time t = 0.0,

all the data points were evenly distributed below and within the boundaries of the

dividing curve. As the velocity gradient tensor evolved from t = 0.0 to t -- 0.2,

an interesting result was observed. Most of the contour lines were relatively straight,

extending from the upper left of the dividing curve towards the lower right. This same

feature was also observed in DNS of a time-developing mixing layer[31], temporally

evolving plane wake[30] and the homogeneous isotropic flow shown in figure 4.9. This

linear characteristic of the contour lines persists until later times.

Figure 2.9 shows the relationship between -Qs and Q_ at different times. For most

velocity gradient tensors, -Qs is comparable in magnitude to Q_ initially. However,

as the tensor evolves with the Restricted Euler model, -Qs begins to dominate Q_.

This can be explained easily using the definition Q -- Qs ÷ Q_. Qs is negative definite

while Q_ is positive definite by definitions. As Q approaches -_c as dictated by the

Restricted Euler model, Qs --+ Q while Q_ -+ 0, hence -Q_ >> Qw.

The sequence of evolution for Q,_ and (Rs - R) at four different times is shown

in figure 2.10. At initial time t -- 0.0, the data points formed a "tear-drop" shape

structure, centered at the origin of the plot. As the solution evolves in time, the bulk

of this structure slants towards the positive side of the (R_ - R) axis. This result is
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consistent with the evolution equation for enstrophy density shown by Cantwell[4]:

dV____= 2(Rs- R). (2.54)
dt

The next chapter will allude to the results presented here by way of comparison

with a computation of a flow which is inviscid but includes the pressure. This will be

followed in later chapters by comparisons with viscous simulations.
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Figure 2.8: Time evolution of logarithmic contour plots of joint pdf of Qs vs Rs. Aij

is not normalized. (a) t--0.0. (b) t=0.2. (c) t=0.5. (d) t=l.0.
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Chapter 3

Inviscid interaction of vortex tubes

3.1 Introduction

After observing the behavior of a random distribution evolving with the Restricted

Euler model, it is of interest to determine if any region within a turbulent flow exhibits

similar behavior. An inviscid calculation of interactions between two perturbed anti-

parallel vortex tubes was therefore selected for this study.

There are many debates on the existence of singularities in three-dimensional,

incompressible Euler (inviscid) flow. Earlier inviscid simulations on two prescribed

anti-parallel vortices by Pumir and Siggia [25] suggested that there is no singular-

ity and the growth in peak vorticity at late times is at most exponential. Inviscid

calculations with random initial conditions in a periodic box performed by Herring

and Kerr [13] also appeared to grow at most at an exponential rate. Some viscous

calculations [18, 20, 22] also suggested exponential growth when the trends of the

calculations were extrapolated towards the limit of zero viscosity. Despite all these

claims against the existence of singularities, Kerr [17] performed a simulation which

provided evidence that supports the existence of a singularity. The simulation was of

the interaction of perturbed anti-parallel vortex tubes using smooth initial profiles in

a bounded domain. It was concluded by Kerr that the peak vorticity, the peak axial

strain and the enstrophy density production scaled as (to - t) -1 while the enstrophy

43
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Figure 3.1: The anti-parallel vortex tubes at initial condition.

density grows logarithmically, tc was the critical time in the flow at which it was

hypothesized to approach singularity.

The objective of this thesis is not to address the debate on whether a singularity

exists in Euler calculations, but to study the characteristics of this very interesting

inviscid flow simulated by Kerr. The domain surrounding the peak vorticity in this

flow was analyzed by classifying its local flow topologies. A coherent structure within

this domain has been identified to exhibit similar characteristics predicted by the

Restricted Euler model.

3.2 Brief description of the flow

Interaction of perturbed anti-parallel vortex tubes was simulated using DNS. Smooth

initial profiles in a bounded domain with bounded initial vorticity were used to en-

sure symmetry in the flow. A sketch of this flow at the initial condition is shown

in figure 3.1. The symmetries imposed were represented by free-slip boundary con-

ditions at the "dividing" plane between the vortices and the "symmetry" plane of

the maximum perturbation of the vortices. Both planes are identified in the sketch.

The image vortex tube, shown in dashed lines in the figure, was included to impose

symmetry condition.
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3.2.1 Numerical method

Spectral methods that employed symmetries were employed in the simulation. The

numerical method used Chebyshev polynomials which satisfy the free-slip boundary

conditions at the dividing plane in the z-direction, Fourier transforms in the periodic

x-direction, as well as sine and cosine transforms in the y direction that satisfy free-slip

boundary conditions at the symmetry plane. The mesh size used in the calculation

was 512:256:192 in a domain of 47r x 4_r x 2r, which was concluded to have the best

resolution properties. Global quantities such as enstrophy density and enstrophy

density production were determined to have time dependencies consistent with the

trends for peak vorticity and rate of strain.

3.2.2 Initial condition

Initial vorticity profiles used in the calculations with a high-wave number filter are

similar to those used in Melander & Hussain [21] and Kerr & Hussain [18]. However,

the use of the Chebyshev method in the vertical z direction imposed several limita-

tions. Kerr overcame the difficulties by using a rather sophisticated way of defining

a compact vortex core such that the unfiltered vortex core goes to zero smoothly at

a given radius r, but is still Gaussian in the center. A high order exponential filter

was then imposed to smooth out the rough edges. This filtering also expanded the

vortex such that its edge was just above the dividing plane.

3.3 Classification of local flow topologies

In the results presented below, the domain of the flow analyzed is in a 2rr x 2_r × 7r box.

This domain is only a small part of the whole flow, surrounding the peak vorticity

in the flow. The initial peak vorticity wp]o was set to 1.0 at the beginning of the

simulation. This vorticity, with dimension of characteristic frequency, was used to

non-dimensionalize time t obtained from the simulation:

_- = t × Wvlo. (3.1)
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Data were analyzed from _- = 12.5 when this domain of flow began to develop,

until the latest time of T - 17.5 when this domain was concluded to exhibit self-

similar characteristics. The non-dimensionalized critical time at which the domain

was hypothesized to approach singularity is % -- 18.9 + 0.1. Significant resolution

effects began to appear in the results after _- -- 17.0. However, the result at _- =

17.5 was included in the analysis to infer the scaling of the quantities that develop

asymptotic behavior. In the discussion of results in the following sections, emphasis

will be placed on the data set at time T -- 17.0 when the convergence of all the strain

components is strongest and the resolution most reliable.

Figure 3.2 shows a contour plot of the iso-enstrophy density of the perturbation in

the domain analyzed at time _- = 17.0. This plot is presented from a perspective view

looking along the stream-wise y-direction. The vertical z-axis has been stretched to

five times its original value to show the development in the vertical direction more

clearly. The horizontal x-axis is the dividing plane which separates the corresponding

perturbation from the image vortex (not shown) directly below the dividing plane.

Kerr labeled the region extending above the peak vorticity just behind the leading

edge of the vortex as "head" while the vortex sheet extending behind the peak vor-

ticity as "tail". Both the "head" and "tail" were concluded to be vortex sheets, and

remained so as the flow evolved to later times. The region of peak vorticity concen-

trates into a region where the vortex sheet of the head and tail meet at a sharp angle

at the lower left corner.

Figure 3.3 shows the time evolution of the invariants Q and R from 7 = 12.5

when the flow began to develop, until _- -- 17.5. The invariants "explode" from

the origin at early time since the velocity gradient scales _ 1/(Tc -- "r). Figure 3.4

also exhibit similar observations where the invariants grow very rapidly from the

origin at early time. This huge difference in the scale of invariants at different times

makes comparison of invariants relatively difficult. A normalizing factor based on

the instantaneous mean strain-rate was therefore chosen to normalize the velocity

gradient:

= d,j/f_, fl- (3.2)
\ sijsij /
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Figure 3.2: Contour plot of iso-enstrophy density surfaces in a domain surrounding

the peak vorticity.
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A}j is the dimensional velocity gradient obtained from the simulation.

Figure 3.5 shows the time evolution of the joint pdf between the second and third

invariants of the normalized velocity gradient tensor. The contour plot of the joint

pdf of the invariant approaches a self-similar shape. All the data points were observed

to be at relatively low R values, almost hugging the Q-axis. No strong tendency of

data points towards the right discriminant curve is observed.

Two distinct structures are observed from the Qs-Rs plots shown in figure 3.6. One

of the structures consists of data points that hug the Qs-axis. The other structure is

more complicated as it is actually a combination of different substructures. One of the

substructures consists of data points that share the same ratio of a :/3 : % Figure 3.7

re-plots the same invariant plots with curves of fixed a : /3 : 7 ratio superimposed

on the structures. Normalizing the eigenvalues by I_1, the ratio of "y : a ranges from

-1.287 at 7" = 12.5 to -1.732 at 7 = 17.5.

The other substructure identified consists of data points with the linear relation-

ship:

A3+ AQs + R_ = 0. (3.3)

A is any one of the three principaleigenvalues of the strain-ratetensor, Sij. This

particularlineosculatesthe discriminant curve at a singlepoint and has the property

that allthe data points that lieon ithave a common A. The identificationof data

points that lieon thislinein both the invariantand physical spaces willbe discussed

in section 3.3.1.

Figure 3.8 plots the relationshipbetween -Qs and Qw of the velocity gradient

tensor. Most of the data points in the plots have comparable localenstrophy den-

sityand localdissipation,a directresultof data obtained from regions of high local

enstrophy density due to the vorticesand also high localstraindue to the interac-

tion/stretchingbetween the two vortex tubes. Numerous data pointsin thisflow have

very high localdissipationbut very low localenstrophy density.Another interesting

observation from thisfigureisthat data pointswith high localenstrophy density but

very low localdissipation(eg.solidbody rotation)are not identifiedin thisflow.

Figure 3.9 reveals very interestingplots showing the relationshipbetween the

local enstrophy density and the vortex stretchingterms in the flow. The invariant
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plots show that all the data points are bounded within a fan-like structure, with no

isolated data points outside the two distinct boundaries on both sides. Cantwell [4]

concluded from the Restricted Euler model that there is a direct relationship between

the evolution of local enstrophy density and the vortex stretching term:

dQ_

dt - 2(Rs- R). (3.4)

This relationship indicates that for data points evolving with the Restricted Euler

model, there is an upper limit as to how fast the local enstrophy density of these

data points can evolve in the flow. This limit is imposed by the vortex stretching

term (Rs - R). In addition, data points which satisfy the Restricted Euler model

also approached an asymptotic state with relationship shown in equation 2.49 and

figure 2.1. Therefore, data points that lie in the distinct right boundary of figure 3.9(c)

were investigated further. These are the identified data points for further studies.

3.3.1 Classification of local flow topologies for identified data

points

Figure 3.10 shows the various joint pdf for data points that are identified to lie on the

right boundary of figure 3.9(c). The slope of Q_ to (Rs - R) for these data points is

determined to be - 2.30.

The Q-R and Qs-Rs invariant plots are very interesting because all the data points

identified can be best-fit onto a straight line on both plots. The straight line is of the

form A3 + _Q + R = 0 in the Q-R plot and A3 + _Qs + Rs = 0 in the Q_-R_ plot.

These lines osculate the respective discriminant curves at a single point. A is any one

of the three principal eigenvalues of the velocity gradient tensor (in the case of Q-R

plot) or the rate-of- strain tensor (in the case of Qs-R_ plot). Therefore, all the data

points that fall exactly on this line share the same eigenvalue. But which of the three

principal eigenvalues (a,/3 or _) does A correspond to ? To answer this question, the

three principal eigenvalues of both the Aij tensor (two of which may be complex) and

the S_j tensor (all three of which must be real) of these identified data points were

determined and sorted in descending order such that c_ > t3 > % These eigenvalues
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Figure 3.5: Time evolution of logarithmic contour plots of joint pdf of Q vs R.
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are plotted in figure 3.11. Looking first at the eigenvalues for the Sij tensor, there is a

clear indication in figure 3.11(a) that the positive intermediate principal eigenvalue,

_, is the eigenvalue that is shared by most of the data points. The mean value of

was determined to be 0.40. Figure 3.11(b) plots the principal eigenvalues of the

Aij tensor. At least one of the three eigenvalues is real, and that is the one shared

by most of the data points. Data points with complex eigenvalues can usually be

identified by those that have the same _ and -/in the plot. It is clear from this plot

that the eigenvalue of the Aij tensor shared among the data points is the positive a.

The mean value of c_ was also determined, and interestingly, it was also found to be

0.40. Therefore, A corresponds to a in the Q-R plot and the positive _ in the Qs-Rs

plot. The straight lines with A = 0.40 are superimposed in both figures 3.10(a) and

(b) to show how well the data points fit onto the line.

In the discussion of the behavior of the velocity gradient tensor in an incompress-

ible flow where the acceleration gradient tensor Hij _ 0, Cantwell[5] hypothesized the

existence of an intermediate asymptotic state for the velocity gradient tensor Aij(t).

Cantwell theorizes that after a fluid particle is set into motion by any flow, the particle

settles into a state similar to the Restricted Euler model where its velocity gradient

tensor satisfies the asymptotic form:

Aii(t) _ g_j[R(t)] 1/3. (3.5)

The angular momentum of this fluid particle changes relatively slowly under the action

arising from the flow when Hij _ O. Cantwell proceeded to propose the intermediate

asymptotic state for Aij(t):

Aij (t) = Mijef I(t)dt; dAij
dt - Aijf(t). (3.6)

For particles which satisfy this intermediate asymptotic model, a particular relation-

ship that links the discriminant of Hij, DIgq to that of Aij, DIA_j was derived:

DIH q = DIAij(R -t- fQ + f3)2 (3.7)

The main consequence of this relationship is that the discriminants of Aij and H_j

have the same sign, since the factor in brackets is squared. The eigenvalues of both
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gradient tensors were therefore concluded to have the same character. The result

that data points from the incompressible, Euler calculations were observed to have

the same relationship as the factor in brackets lends support to the validity of this

model.

The -Qs-Qw and Q_,-(Rs -R) invariant plots of these data points also reveal very

interesting results. These data points also exhibit characteristics of the asymptotic

state of the Restricted Euler model; described in equations 2.47 and 2.49. Most of

these data points appear to lie on a straight line, intercepting the -Q_ axis at a

finite positive value in the -Q_-Q,_ plot and the origin in the Qw-(R_ - R) plot. The

straight lines that best fit these data points are found to be:

-Q_ = 0.89Q_ + 0.41;

Q_ = 2.30(Rs- R).

Similar data points were also identified in the same way at various times from

_- -- 12.5 to _- = 17.5. All the data points can be best-fit to a straight line with

equation A3 + AQ_ + R_ = 0. Figure 3.13 depicts these data points together with the

straight line when A - 0.40.

These same data points were also identified in the physical space as shown in

figure 3.14, which is a contour plot of the local enstrophy density of the flow above

the dividing plane. This figure illustrates the local enstrophy density level in the

symmetry plane. The contour levels range from 0.445 to 4.45 at interval of 0.445

for all four plots. Data points that are identified in the right boundary have been

superimposed on these plots, marked by the symbol '+'. These data points formed a

very coherent structure from the earlier times when the flow began to develop until

the later times; always located near the peak vorticity and evolved with it.

3.3.2 Classification of local flow topologies for data points

with different Q_,/(Rs- R) slopes

In addition to data points that are identified on the right boundary of the Q_ vs

(R, - R) plot of figure 3.9(c) (with slope Q,_/(R_ - R) "- 2.30), other data points
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Figure 3.11: Principal eigenvalues of identified data points with Q,o/(Rs - R) - 2.30.

x:a, o:/3 and +:% (a) rate-of-strain tensor Sij. _ = 0.40. (b) velocity gradient tensor

Aij. _ -" 0.40.
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Figure 3.12: Linear lines that best-fit the identified data points with Qw/(Rs - R) "--

2.30. (a) -Q, = 0.89Q_ + 0.41. (b) Qw = 2.30(R_ - R).
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Figure 3.13: Qs vs Rs for data points that lie on the right boundary of the Q,_ vs

(Rs - R) plot. Equation of straight line: 0.403 + 0.40Qs + Rs = 0. (a) _- = 12.5.

(b) T = 15.0. (C) m = 17.0. (d) _-= 17.5.
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(a) (b)

(c) (d)

Figure 3.14: Time evolution of the contour plots of local enstrophy density in the

symmetry plane. Contour levels range from 0.445 to 4.45 at interval of 0.445. +:

data points that lie on the right boundary of the Q,_ vs (Rs - R) plots. (a) _- = 12.5.

(b) _ = 15.0. (c) _ = 17.0. (d) 7-= 17.5.
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that lie on different Q_/(Rs - R) slopes at _- = 17.0 are also identified and studied.

These data points are within +15% of slopes ranging from 5.00, -8.00 to the left

boundary in figure 3.9(c), with slope of -3.80. Due to the extremely small number of

data points that lie on the left boundary, the slope of -4.40 was selected to replace

-3.80 instead. Choosing a slope of -4.40 ensures that a reasonable number of data

points are provided, and still include data points that lie on the left boundary. Data

points that lie very close to the Q,o axis are also of interest. These data points have

very large Q_,/(Rs - R) values.

Figures 3.15 and 3.16 depict the Q-R and Qs-Rs plots of the selected data points.

Again, the points tend to lie on a straight line of: A3 + £Q, + Rs = 0. The value of

was found to vary depending on the slope.

An interesting question arises as to which principal eigenvalue does _ correspond to

when the slope selected is negative ? To answer that, the principal eigenvalues of both

the Aij and Sij tensors for selected data points with slope of -4.40 were determined

and plotted in the same way as in figure 3.11 shown earlier. Figure 3.17(a) plots out

the eigenvalues of the S_j tensor. These data points do not show as strong a tendency

to share an eigenvalue as those identified with slope of 2.30 in the earlier section.

However, most of these data points have roughly equal value of the intermediate

principal eigenvalue f/, which is negative. The mean value of _ was found to be

-0.26. When the principal eigenvalues of the Aij tensors for these data were also

determined, only a portion of the data points appear to have roughly equal value of

%

Similar studies were done for data points that lie on other slopes. These data

points share roughly equal value of the intermediate principal eigenvalue of the rate-

of strain tensor. This common principal eigenvalue is positive when the slope is

positive, negative otherwise.

On the other hand, these data points do not have strong indication of having

the same principal eigenvalue of the velocity gradient tensor when the slope selected

deviates from the distinct right boundary with slope of 2.30. Among those data

points that have roughly equal eigenvalue, the eigenvalue that these data points have

in common is a when the slope is positive, _/otherwise.
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Table 3.1 gives the corresponding A value to the different slope selected. A is

determined from the mean/3 of the data points on these slopes. The same A is also

used in the equation of the straight line superimposed onto Q-R plots for these data

points.

Table 3.1: Values of A corresponding to selected slopes.

slope 2.30 5.00 oo -8.00 -4.40

A 0.40 0.20 _ 0.0 -0.16 -0.26

Figure 3.18 shows that most of these points tend to have comparable local dissipa-

tion and local enstrophy while figure 3.19 identified the data points that correspond

to the various slopes. These data points were also identified in the physical space

shown in figure 3.20. Data points with positive slopes tend to lie closer to the "tail"

of the vortex contour while those of negative slopes tend to lie close to the "head" of

the vortex contour.

Results from subsections 3.3.1 and sec:others indicated that data points that lie

on the right boundary of the Q_ vs (Rs - R) exhibit characteristics predicted by the

Restricted Euler model. These data points have roughly the same intermediate prin-

cipal eigenvalue of the rate of strain tensor, as well as the largest principal eigenvalue

of the velocity gradient tensor. The relationship of -Qs and Q,_ for these data points

is also of the same form as the asymptotic solution of the Restricted Euler model. In

the physical space, these data points form a coherent structure in the flow, always

very close to the peak vorticity, These results indicate that even though Restricted

Euler model assumes the acceleration gradient tensor Hij = 0, its solution may still

be applicable and useful in certain regions of a "real" flow. Similar results were not

observed for data points that lie on other Q,_/(Rs - R) slopes.
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Figure 3.15: Q vs R for data points with various Qw/(Rs-R) slopes. (a) 5.00. (b) cx_.

(c)-8.00. (d)-4.40.
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Figure 3.16: Qs vs Rs for data points with various Q_/(R_ - R) slopes. (a) 5.00.

(b) oz. (c)-S.00. (d)-4.40.
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Figure 3.18: -Qs vs Qw for data points with various Q,_/(Rs - R) slopes. (a) 5.00.

(b) cx:_. (c)-8.00. (d)-4.40.
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Figure 3.19: Q_ vs (Rs-R) for data points with various Q_/(Rs-R) slopes. (a) 5.00.

(b) oc. (c)-8.00. (d)-4.40.
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(a) (b)

(c) (d)

Figure 3.20: Contour plots of local enstrophy density in the symmetry plane. Contour

levels range from 0.445 to 4.45 at interval of 0.445. +: data points with various

Qw/(Rs- R) slopes. (a) 5.00. (b) c_. (c)-8.00. (d)-4.40.
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3.3.3 Classification of local flow topologies for other interest-

ing structures

In addition to studying the local flow topologies for data points with various slopes of

Q_ and (Rs - R) as well as locating them at the corresponding physical space, data

points that lie within other interesting structures were also identified.

Data points with low local enstrophy density

Figure 3.21 depicts the invariant plots of data points with local enstrophy density

less than or equal to five percent of the maximum enstrophy density in the flow at

time 7 -- 17.0. Referring to figure 3.8(c), these are the data points with relatively

high local dissipation. Figures 3.21(a) and (b) are almost identical. This is because

Q -- Qs + Q_ by definition, which implies that Q _ Q_ since these data points have

very low Qw. These data points were identified in the low contours of the vorticity

contour plot in figure 3.25(a).

Data points with high local enstrophy density

The invariants of data points with local enstrophy density of more than 70% of the

maximum enstrophy in the flow were also examined. Both Q-R and Q_-R_ plots gave

early indication that all these data points might have the same 7/a ratio. However,

figure 3.22(b) reveals that these data points do not correspond to any of the ratios

superimposed onto the plot. The reason is because the tendency for data points to

have the same _,/a ratio is usually observed only in regions of high local dissipation.

In this flow, data points with high local enstrophy density do not always have high

local dissipation, as observed in figure 3.22(c). Therefore, these data points do not fit

onto any of the "7/a ratio curves. Figure 3.25(b) identified these data points in the

physical space, which all lie within the vortex core with the highest contour level at

the lower left corner where the "head" meets the "tail".
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Data points with high local dissipation

Two distinct structures were formed by data points with local dissipation greater than

70% of the maximum dissipation in the flow shown in the Q-R plot in figure 3.23(a).

The first structure with mostly positive Q and negative R is very similar to the one

shown in figure 3.23(a). In fact, these are the data points that also have high local

enstrophy, a subset of those data points discussed in the preceding subsection. The

other structure is formed by data points with high local dissipation but with low local

enstrophy density. Two separate structures are also formed by these data points in

figure 3.23(b). One of the structures hugs the Qs axis, while the other fits onto a

curve of common "_/a ratio shown in figure 3.7(c). These data points are indicated

in the physical space shown in figure 3.25(c).

Data points with comparable local enstrophy and dissipation

Finally, data points of local enstrophy density within 15% of the local dissipation are

identified in figure 3.24. These data points have very low Q, as shown in the Q-R

plot. This is because Qs is always negative while Q_ is always positive. Therefore,

Q for data points with exactly the same magnitude of Qs and Q_ would be zero

by definition. Figures 3.24(c) and (d) show that these points formed a very coherent

structure in both plots while figure 3.25(d) identified these data points in the physical

space.
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Figure 3.21" Data points with Q_ < 5% of Q_lm_=- (a) Q vs R. (b) Q_ vs Rs.

(c) -Q, vs Q_. (d) Qw vs (R,- R).
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Figure 3.22: Data points with Qw _> 70% of Qw[rnax. (a) Q vs R. (b) Qs vs Rs.

(c) -Qs vs Q_o. (d) Qw vs (Rs- R).
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Figure 3.23: Data points with IQsl _- 70% of IQslm=x. (a) Q vs R. (b) Q_ vs Rs.

(c) -Q_ vs V_. (d) Q_ vs (R_- R).
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Figure 3.24: Data points with -Qs ,_ Q,_. (a) Q vs R. (b) Os vs Rs. (c) -Qs vs Q_.

(d) Q_ vs (Rs- R).



78 CHAPTER 3. INVISCID INTERACTION OF VORTEX TUBES
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Figure 3.25: Contour plots of enstrophy density in the symmetry plane. Contour levels

range from 0.445 to 4.45 at interval of 0.445. +: data points with (a) Qw <_ 5°-/oQwlmaz •

(b) Q,, >_ 70%Q,_lm_. (c) IQ I > 7O%lQ_lm_. (d) -Q_ ,_ Q_.



Chapter 4

Homogeneous isotropic flow

A random field is homogeneous if its statistical properties are invariant under a trans-

lation of the coordinate system. The one-point statistics of a homogeneous field are

independent of position, and multiple-point statistical properties depend only on the

separation of the sampling points. A random field is isotropic if all its statistical

properties are invariant under a rotation of the coordinate system. The one-point

statistics of such a field are independent of the orientation of the coordinate system.

Turbulent fluid motion is usually homogeneous if it is isotropic. Although ideal ho-

mogeneous and isotropic turbulence rarely exists, regions within turbulent flows often

exhibit characteristics of homogeneous and isotropic flow.

This chapter focuses on a direct numerical simulation of a homogeneous and

isotropic flow in a periodic box. This relatively low Reynolds number flow simulation

was performed on a Silicon Graphics Indy workstation.

4.1 Approach

The three dimensional Navier-Stokes equations for incompressible flow were solved nu-

merically using a pseudo-spectral method. The flow was assumed to be homogeneous

and isotropic, with periodic boundary conditions imposed on all sides of a cube. The

length of each side of this cube is 2_. The computational procedure involves trans-

forming the velocity field from the physical space to Fourier space. Calculations of

79
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solutions to the Navier-Stokes equation are performed in this spectral wave-vector

space. The convolution sum that appears in the Fourier transformed Navier-Stokes

equation is most efficiently calculated using a discrete form of the convolution the-

orem and the Fast Fourier algorithm. The non-linear products are first calculated

in physical space and then transformed back to the spectral wave-vector space. A

straight forward application of the Fast Fourier transform introduces "aliasing" er-

rors. This is because the Fast Fourier transform is a discrete Fourier transform with

no distinction made between wave-vector components of modulo 2mkc; where kc is

the maximum wave-vector (Nyquist "frequency") considered in the calculations and

m is any integer. Energy of high wave-vector components unresolved in the simula-

tion is thus "aliased" into components of lower wave numbers. One way of removing

the aliasing errors more efficiently is to truncate the interactions outside a specified

boundary in Fourier space. This method does not significantly affect the resolution

because only the high-wavenumber tail of the spectrum, containing a small fraction

of the total energy, is truncated.

4.1.1 Derivation of governing equation

Given a velocity field in physical space, u = u(x, t), the direct Fourier transform of

u from physical space to spectral wave-space is:

1 f[exp[-ik, xlu(x,0dx, (4.1)a(k,t)- (2 )3

where fi(k, t) denotes the transformed velocity field in spectral wave-space. To convert

fi(k, t) to physical space, apply the inverse Fourier transforms to fi(k, t):

=/[exp(ik. x]fi(k, t)dk. (4.2)U(X, t)

Both integrals involved in the direct and inverse transforms are carried out over an

infinite three-dimensional domain. In subsequent sections, the symbol "^" wilt be

used to denote the transformed quantities in the Fourier wave-space.

Consider the incompressible Navier-Stokes where the continuity and the momen-

tum equations are, respectively:

V-u=O, (4.3)
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con

0---{+ u- Vu = -VP + vV2u. (4.4)

P = p/p is the kinematic pressure and v = #/p is the kinematic viscosity.

The Fourier transform of the continuity equation is:

V-_.u = 0 = k. fi(k, t) (4.5)

Equation 4.5 reveals an important result: the Fourier transform of the velocity,

fi, is constrained to lie in a plane in wave-space, % perpendicular to k since the

dot-product between k and fi is zero at all times.

Taking the Fourier transform of the momentum equation:

0fi(k, t)
+ vk2fi(k, t) = -ik/5(k, t) - u .Vu (4.6)

0t

or

0

(_ + uk2)fi(k, t) = -ikP(k, t) - u .Vu (4.7)

The terms on the left hand side of the above equation involve only the velocity,

fi, which evolves only in the wave-space plane 7r. Therefore, all the terms on the

right hand side must also evolve in the same wave-space plane. However, k/5(k, t) is

parallel to k and perpendicular to the plane 7r. Hence, this quantity must be equal

and opposite to the out-of-plane component of u .Vu. This constraint was used to

remove the pressure term from the momentum equation. Since ikP(k,t) + u.Vu

must lie in _r - plane, this quantity can be rewritten as:

k-(ik/5 + u .Vu) = 0, (4.8)

or

ik2P + k. u .Vu = O.

Multiplying equation 4.9 through by i, an expression for/5 is obtained:

(4.9)

Finally, the momentum equation can be rearranged to obtain the governing equa-

tion for fi:

O^ [k. u.Vu]/__ u ._u_ vk2fi
_-_u(k,t) = L _7 j

(4.11)

ik- u -Vu

t5 _ k 2 (4.10)
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The quantity u-Vu is not written as a convolution sum in wave-space because it

is most efficient to carry out the product in physical space during the numerical im-

plementation. This method of calculating the non-linear term is the pseudo-spectral

method (also known as the Fast Fourier transform method).

4.1.2 Numerical method

The governing equation for fi_ in equation 4.11 was simplified further so that a nu-

merical algorithm could be implemented to solve it more efficiently.

Treatment of the non-linear term

The non-linear term u .Vu is the convolution sum, responsible for most of the algo-

rithmic complexities of the numerical scheme. Using the expression _'7" to denote the

direct Fourier transform and 9rT -1 for the inverse Fourier transform, the convolution
^

sum could be replaced by fjm:

(u ._u)_ = YT(u. Vu)= ikm,YT[Y'T-a(fim)grT-l(_j)! (4.12)
Y

Equation 4.11 becomes:

• ktkj ^
k - u = -ik ],m + (4.13)

or

., ktkj
O5t(k,t) _ -ikm_m + z_,_--_--1_m - uk25t(k,t). (4.14)

Ot

Treatment of the viscous term

The numerical implementation of equation 4.14 could be simplified by removing the

viscous term on the right hand side. This viscous term can be absorbed into the

main source term using a very elegant technique employed by Rogallo[28]. Given an

Ordinary Differential Equation (ODE) of the form:

d_--Jl= G + uk25_, (4.15)
dt
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this equation can be simplified by introducing an integrating factor, ¢ = e vk2t such

that:

d (¢fil) , dill= 0-_- + Cvk2_t = CG.

This same technique is used to simplify equation 4.14:

d_, - kjkm^
12 k2 _l = i[k,_fjm - km],m]= c,,

dt Ig*

d

ktkj __

(4.16)

(4.17)

(4.18)

(¢e,).+1_ (Cat)"= -_[3(¢c_)" - (¢G,)_-1].

Substituting ¢ -- e_k2t into the above equation,

- e_k_t"_ = _[3e"k2t"G'_ - e_k_(t"-Vt)G_-l]. (4.22)evk2(tn +Vt) _?+ l

Dividing this equation by e_k_t_ • e_k2vt, and rearranging:

_t_ q-1 -+- _-[o_ G 1 - (4.23)

Gt = z"[_t_k2 5jm; - km]_m] Equation 4.23 is the evolution equation for velocity in wave

space _t.

(4._0)

(4.21)

A_

U_ +1- _ -- -_[3F n - rn-1].

Applying the same scheme to equation 4.18 gives

to

Time marching scheme

A second-order Adams-Bashforth time marching scheme was selected to discretize

equation 4.18 forward in time. The Adams-Bashforth scheme converts an ODE from:

dut

d---t = F. (4.19)
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Evolution of the zero-wave number component

An apparent singularity is observed in equation 4.23 at the zero wave number (where

k = _/k_ + k_ + k_ = 0). This singularity can be removed by considering equation 4.6.

At zero wave number, this equation becomes:

a (o,t)
&

- -ikP(O,t)-u.Vu(O,t)

= -ik,

=

= 0

Therefore, the zero wave number component of the velocity does not evolve. This

apparent singularity due to the zero wave number component can be avoided by

considering only the non-zero wave number components in the evolution equation.

4.1.3 Initial condition

The velocity in the simulation was initialized to satisfy both the continuity and

isotropy conditions. This initial condition was first used by Rogallo[28]. Given an

initial energy spectrum, the continuity condition is satisfied by assuming velocity fi:

= =  (i;)ei + (4.24)

e_ is the computation vector basis and e_ is any vector basis having e_ parallel to f_.

The complex components a and fl in general are random in amplitude and phase,

subject only to the constraint that:

/ <u.u'>dA(k)=E(k)=f <aa*+fi_*>dA(k). (4.25)

E(k) is the desired energy spectrum and the bracket <> denotes the inner product

between the vectors. Rogallo selected a and fl to be:

a= \47rk2 / , \_/ sine.
(4.26)

01, 02 and ¢ are any random numbers uniformly distributed within the interval (0, 27r).
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To complete the formulation, the basis _ ' needs to be related to the computational

basis _. This is achieved by using any basis subjected to the constraint:

ke'3' = kle'l + k292 + k3e'3 = k. (4.27)

Rotation about e'3' is absorbed into the random phase ¢. A particular basis is arbi-

trarily chosen such that:

e-'l'. g3 = 0. (4.28)

This choice of basis leads to a solution for g/':

b2_l/2r r(k_ +,_2] _1 = k2£1 - klg2 (4.29)

k(k_ + k_)1/2_2' = klk3gl + k2kag2 - (k_ + k_)_'3. (4.30)

Therefore, an initial velocity with an energy spectrum E(k) that satisfies both the

continuity and isotropy conditions is:

(otkk 2 -{- flklk 3 flk2k3-oikk 1 fl(_l 2 --}- k22)1/2 ,3) (4.31)

In the simulation, the initial energy spectrum was chosen to be of the form "Top-

hat", as shown in figure 4.1. The energy for wave numbers k = _/k_ + k_ + k_ in

the range between kc/3 and 2k_/3 were initialized to a uniform magnitude. Energy

for wave numbers outside this range was set to 0.0. k¢ is the Nyquist wave number,

which is half the number of grid points used in the simulation on each side of the

cube.

4.1.4 Accuracy and Stability analysis

The numerical scheme used in this simulation is spectrally accurate in all the spatial

directions, and second order accurate in time.

The stability of the numerical scheme can be analyzed by applying the second

order Adams-Bashforth time marching scheme to a model equation. This model

equation is a one dimensional linear convection-diffusion equation:

Ou Ou 02u

0--[ + a --_x = u Ox----_ . (4.32)



86 CHAPTER 4. HOMOGENEOUS ISOTROPIC FLOW

0.1

o.o5
U_

1'6 24 32

k

Figure 4.1: Initial energy spectrum.

Both a and u are constants in this equation. When 27r = NVx, velocity u at a single

Fourier component k can be expressed in a general form as:

U -- eate 2rikz/NVx -- eat • e ikx. (4.33)

Substituting the expression of u into equation 4.32:

Ou

O--t= -(uk2 + iak)u = Lu. (4.34)

A second order Adams-Bashforth time marching scheme is used to discretize the

above ODE into:

= u '_ + 2(3Lun - Lu"-l). (4.35)un+ 1

Let a denotes e art. Since eat = (eaVt) n = a n, it is clear that the criterion for

numerical stability is [a[ < 1.

Substituting u" = o.neikz into equation 4.35:

+ + =o. (4.36)O .2

The roots for this equation are:

1[ 3 _a_,2 = -_ 1+ _ + I + LVt + L2Vt 2 (4.37)
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Figure 4.2: Stability region for second order Adams-Bashforth marching scheme

Using power series to expand the terms within the square-root:

i _L922 _(LVt + _L2Vt 2) - _(LVt +I+LVt+ Vt = 1+ 94L2Vt2)_ +

The two roots of equation 4.36 are:

al = 1 + LVt + 1L2Vt2 + O(Vt3);

(z2 = _LVt- L2Vt 2 + O(Vta). (4.39)

The first root shows that Adams-Bashforth scheme is second order accurate in time.

The second root or2 is spurious. The presence of spurious root is a characteristic of

all multi-step time marching schemes. In the case of second order Adams-Bashforth,

this spurious root is of less concern since a2 --_ 0 as Vt --+ 0. Figure 4.2 shows the

stability region when the numerical scheme is stable. The stability contour crosses the

Re(LVt) at -1 and tangent to the imaginary axis. Strictly, the method is unstable for

purely imaginary L (when v = 0). However, this instability is very mild. In viscous

flow, the scheme is stable.
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4.1.5 Aliasing errors

One of the complications arises in using the pseudo-spectral method to evaluate the

convolution sum is the "aliasing" of high wave-number components into the lower

ones. This is due to the fact that fast Fourier transform is incapable of distinguishing

between wave-vector components of modulo 2mkc, where kc is the Nyquist wavenum-

ber and m is any integer. In Fourier transform, each Fourier coefficient denotes the

contribution of a specific wave number to the velocity represented. Aliasing refers to

the error in some Fourier coefficients due to contamination by other Fourier coeffi-

cients with wave numbers outside the range -kc < k < kc. Figure 4.3 illustrates this

error when the number of grid points used in the simulation (N = 8) cannot resolve

the wave-vector components represented by the higher wave numbers outside the

range of -kc < k < kc, (kc = N/2 = 4). Figure 4.3 shows that there are enough grid

points to represent a sine wave of sin(38) but not sin(90). The information captured

by the grid points made the sine wave sin(90) appears to be sin(0).

In this simulation, the aliasing error is eliminated by the use of two sets of shifted

grids as well as truncating Fourier wave components higher than a specific range. The

details of this de-aliasing technique are described in Appendix B.

4.2 Classification of local flow topologies of Aij ten-

sor

The characteristic time scale to (eddy turn-over time) is used to normalize the dimen-

sional time t obtained from the simulation:

_-= t/to; to = q_/_, (4.40)

where qo2 = ½u_ui and _o = 2u_js_j are the mean kinetic energy and the mean dissipa-

tion at initial condition. Figure 4.4 plots the time history of the mean kinetic energy,

the mean strain-rate and the mean Reynolds number based on Taylor microscale A.

A is defined to be:

(4.41)
\ sOso]
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Figure 4.3: Aliasing error due to insufficient number of grid points used in Fourier

transform. --: actual sine wave to be represented. 'o': Fourier coefficients represented

by the grid points. ---: "aliased" sine wave represented by the grid points. (a) sin(3_).

(b) sin(90).
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Self-similar solutions obtained from dimensional analysis[3] in homogeneous shear

flow indicates that length 5 and velocity u scale with time t as:

Therefore,

_ tk; Uo _ t k-1. (4.42)

Aq ,,_ Uo/5 ,,_ t -1. (4.43)

Using this scaling relation for the length and velocity scales, the similarity solution

dictates that the mean kinetic energy, mean strain-rate and the mean Reynolds num-

ber should scale with time t in the following ways:

q2 ,,_ itiU i _,_ t2k-2,

sijsij ", AijAq _ t -2,

Re_ ,,_ Uo " _ _ t 2k-1. (4.44)

These predicted scalings were superimposed on the plots with k -- 0.31.

The energy spectrum and other related spectra for the various velocity derivatives

of this homogeneous isotropic flow are presented in Appendix C.

Figure 4.5 shows a general view of a homogeneous isotropic flow in a periodic box

obtained from the simulation. Figure 4.5(a) is a contour plot of iso-enstrophy density

surfaces, with Iwl = 2.8. The characteristic length scales of the structures shown

in this plot are relatively small, due to the relatively low Reynolds number in the

simulation. This plot is compared to a contour plot of discriminant D in the same flow,

shown in figure 4.5(b). Recall from the definitions of invariants that D - (27/4)R 2 +

Q3, where Q and R are the second and third invariants of Aij respectively. Therefore,

the same velocity gradient tensor Aij that was used to determine vorticity in the

flow was also used to determine D in corresponding grid points. Figure 1.3 depicts

various topologies in an incompressible flow, depending on D. For positive D, the

local topology is either a stable-vortex/stretching or an unstable-vortex/compressing.

Figure 4.5(b) plots the iso-contour surfaces with D = 6.0. This plot reproduces

structures obtained from contour plots of iso-enstrophy density surfaces.

Figure 4.6 shows the time evolution of the invariant plots from T ----0.0 to r = 5.30.

At initial time _- = 0.0, the contour plot of this joint pdf is evenly distributed on both
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Figure 4.5: Iso-contour surfaces for homogeneous isotropic flow at T = 5.30. (a) local

enstrophy density Iwl = 2.8. (b) local discriminant D = 6.0.
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sides of the Q-axis. As the flow evolves, the velocity gradient decays at a rate _ 1/T.

Therefore, the invariants at later times are very small compared to the initial values.

Figure 4.7 shows similar observations for the Q,-Rs invariant plots. This rapid decay

of invariants makes comparison of velocity gradient tensors at different times relatively

difficult. To overcome this problem, the instantaneous mean strain-rate was used to

normalize the velocity gradient tensor:

A_j (4.45)Aij = v------_, 1/2"
(s js j)

A_j is the dimensional velocity gradient tensor obtained from the simulation.

Figure 4.8 shows the time evolution of the normalized Q-R invariant plots from _- =

0.0 to _- -- 5.30. As the flow evolves, the joint pdf of the invariants of normalized veloc-

ity gradient approaches a self-similar shape. Data points with higher gradients tend to

have local flow topologies of stable-focus/stretching and unstable-node/saddle/saddle.

Similar trends have been observed in other turbulent flows [7, 30, 31]. Figure 4.9 shows

the time evolution of the contour plots of the joint pdf of Qs versus R_. Data points of

high gradients are again observed to lie close to the lower right quadrant of the Qs-R_

plot. Since dissipation is directly related to Q_, these data points are concluded to

reside in high local dissipation regions. Figure 4.10 indicates that local dissipation

and local enstrophy density of this flow are comparable in magnitude. Figure 4.11

depicts the "tear-drop" shape structure formed by the contour plots of the joint pdf

of Qw versus (R_ - R). This structure centers at the origin and tilts towards the

positive (Rs - R) axis as the flow evolves.

4.2.1 Effects of conditioning with local dissipation

When data points are conditioned at higher local dissipation levels, there is a tendency

for data points to move close to the right discriminant curve. These data points have

strong preference for local flow topology of unstable-node/saddle/saddle as shown in

figures 4.12 and 4.13.
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4.2.2 Strain-rate distribution

The three principal eigenvalues (strain-rates) of the symmetric tensor of Aij were

determined and sorted in descending order such that:

_>Z __7. (4.46)

Each eigenvalue was normalized by the magnitude of the intermediate principal eigen-

value, 181 so that the intermediate principal eigenvalue is either +1 or -1. Figure 4.14

shows the probability density functions of these normalized eigenvalues. The first plot

includes all the data points while the second plot includes only data points with local

dissipation higher than 25% of the maximum local dissipation in the flow. Most of

the data points are observed to have positive 8. This observation is more pronounced

with the conditioned data. The maxima for a and "7 are _, 1.5 and -2.5 for the

conditioned data.

4.2.3 Vorticity-strain alignment

Ashurst et al.[1], Sondergaard[30] and Tsinober et a/.[32] observed strong preferential

alignment of the vorticity vector with the intermediate principal strain-rate direction.

This alignment was stronger when data was conditioned at higher local dissipation

regions. Figure 4.15 plots the probability density functions of the alignment angle

between the vorticity vector and the three principal eigenvectors of the rate-of-strain

tensor of this homogeneous isotropic flow. The vorticity vector wi is related to the

Aij tensor by:

wl = A32 - A23;

w2 = Als - A31;

w3 = A21 - A12. (4.47)

The alignment angle, 8 is obtained from the dot product between this vorticity vector

and each of the three principal eigenvectors of the rate-of-strain tensor corresponding

to the principal eigenvalues a, _ and 7. The vorticity vector is aligned exactly with

the eigenvector when cos 8 = 1.0(8 = 0) and non-aligned when cos 8 = 0(8 = 90).
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Figure 4.15 shows that the vorticity vector tends to align with the principal eigen-

vector corresponding to eigenvalue f_. This preferred alignment is more pronounced

when data are conditioned with local dissipation greater than 25% of the maximum

local dissipation in the flow. This same vorticity vector is observed to non-align with

the principal eigenvector corresponding to % the most compressive strain-rate direc-

tion. This non-alignment of the vorticity vector with the most compressive strain-rate

direction was also observed by Sondergaard[30] in the plane wake simulation.

4.3 Validation of the pressure Hessian tensor

The pressure p at every grid point in the flow is determined using equation 4.10.

Differentiating this pressure twice spatially gives the pressure Hessian tensor, Pq:

02P (4.48)
Pij - OxiOxj"

Pq tensor is symmetrical by definition. Unlike the Aq tensor, the trace of this Pq

tensor is not zero, as indicated by equation 2.3 which gives the relationship between

Aij tensor and the trace of the pressure Hessian tensor. This relationship is used to

validate the numerical calculation of pressure by plotting Q(Aq) vs 0.SP(Pij) (both

1
equal to --_A_kAki) at r = 0 in figure 4.16. P(Pq) is the first invariant (trace) of Pq:

1 02P _ 1AikAki = Q(Aij). (4.49)P(Pij) - 20xiOxi 2

Notice that the data points do not all fall exactly on the Q(Aij) = 0.5P(Pij)

straight line. This is because Q(Aij) was obtained by multiplying the Aij's in the

physical space; whereas the pressure derivatives were determined in the Fourier space

before being transformed to physical space. The wavenumbers included in the dis-

crete Fourier transforms are limited within the range of -4-N/2, where N is the number

of grid points used in the simulation. Therefore, the calculated pressure derivatives

contain only information from wavenumbers within +N/2. On the other hand, in-

dividual Aij in physical space also contains wavenumbers within the range of -4-N/2.

However, the products of A_kAk_ are performed in the physical space, which increases
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0.5 P(Pii)

Figure 4.16: Comparison of Q(Aq) with 0.5P(Pij).

the effective range of wavenumbers represented by the products. Therefore, AikAki

contains information of higher wavenumbers outside the range =kN/2. Hence, there

is slight difference between them. To compare 0.5P(Pij) to Q(A_j), the correlation

coefficient between them was determined. This correlation coefficient was determined

to be 0.965, with correlation coefficient of 1.0 being exactly the same.

4.4 Classification of local flow topologies of Hij

The characteristics of H# tensor is of the most interest in this thesis. Equation 2.4

shows that the behavior of velocity gradient tensor Aij is governed by Hij tensor,

referred to as acceleration gradient tensor.

To study the behavior of the Aij tensor, Cantwell [4] derived the analytical solution

of Aij when Hij -- 0 and proposed an intermediate asymptotic model[5] for Aij

when Hij _ O. Ultimately, the questions that need to be answered are: What are

the characteristics of Hq? How does it behave in a turbulent flow? Are there any

similarities and differences between the local flow topologies of H_j and Aij tensors?
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There are three invariants for each Hij tensor:

P(Hij) = Hii = 0;

#(Hit)= 1
-'_Hm, H,_m;

R(H_j)= 1
- -_Hm,_H, kHkm. (4.50)

This Hi.j tensor may be decomposed into a symmetric and an anti-symmetric

tensor:

H_ = Sijlh+ W_jlh;
1

w,jlh 1= -_(H_j- Hj_). (4.51)

The second invariants of the Sijlh and Wijlh tensors are represented by Qs(Hij) and

Qw (Hit) respectively. Unlike the invariants of Aij tensor, the exact physical meanings

of Qs(Hij) and Qw(Hij) are still unclear. The principal eigenvalues of the symmetric

Sij Ih tensor will also be determined and referred to as the acceleration strain-rates (as

opposed to the principal eigenvalues of the A_j tensor which are known as the true

strain-rates). Similarly, the equivalent vorticity vector will also be determined from

Hij tensor using corresponding definition for the true vorticity vector obtained from

the Aij tensor:

_hl = H32 - H2a;

Wh2 = H12 - H21;

_hs = Hsl - His. (4.52)

Equation 2.5 gives the definition of Hij from the pressure derivatives and the

second derivative of A_j. This same Hit can also be obtained using equation 2.4.

The results obtained from both equations were compared by plotting Q(Hij) versus

R(Hij) in figure 4.17. The Hij tensor obtained from equation 2.5 is exact within

the wave frequency range of +N/2. All the calculations were performed using the

Fourier coefficients before being transformed to physical space. On the other hand,
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Figure 4.17: Logarithmic contour plots of joint pdf of Q vs R for Hij obtained using

(a) time derivatives and product of Aij. (b) pressure cross-derivatives and second

derivative of Aij.

the H_j tensor obtained from equation 2.4 contained the the products of A_kAkj ob-

tained from the physical space. Therefore, these products contain information of

higher wave numbers outside the range of +N/2, as explained in the earlier section.

However, equation 2.4 requires the information of OAij/Ot. This time derivative of

A_j is determined using a second order accurate numerical method. Therefore, the

accuracy of Hij tensor determined from equation 2.4 is limited by the accuracy of the

numerical method used in getting the time derivatives.

In the rest of this chapter, the Hij tensor is determined from equation 2.5. Calcu-

lation of H_j using this equation is preferred because it requires only information at a

single time. The H_j tensor is also normalized by the instantaneous mean strain-rate:

g:', (4.53)
Hij- (s_jsij'_"

H_'j is the dimensional gradient obtained from the simulation.



4.4. CLASSIFICATION OF LOCAL FLOW TOPOLOGIES OF HI.I 109

Figure 4.18 depicts the time sequence of Q(Hij) versus R(Hij) from 7 = 0.0 to

_- = 5.30. Almost all the data points are below the discriminant curve initially,

indicating that Hij tensor is symmetric with real principal eigenvalues. This H_3

tensor is completely dominated by the symmetrical pressure cross-derivatives when

initial Reynolds number is large. As the flow evolves, the joint pdf of the invariants

slowly transforms into the skewed tear-drop structure shown in the final plot. The

contour plot of joint pdf of Q versus R does not approach any self-similar struc-

ture. Instead, the invariants of this His tensor grow relatively larger as the flow

decays. Data points with high gradients are observed to move towards the lower

left quadrant in the Q-R plot. These data points have equivalent local flow topolo-

gies of stable-node/saddle/saddle. These observations are opposite to the results

obtained for Aij tensor shown in figure 4.8. The tendency for data points to lie

on the lower left quadrant of the Q-R plot is also observed in the relatively higher

Reynolds number simulation of an evolving planar wake (Chapter 5) and a Burgers

vortex (Appendix D).

Figure 4.19 shows the time evolution of the joint pdf of the second and third

invariants of the acceleration rate-of-strain tensor. As the flow evolves, the joint

pdf of the invariants skews toward the lower left quadrant. The magnitude of the

gradients also grows relatively larger as the flow decays. The higher contour levels

form straight lines extending towards the lower left quadrant of the Q_-Rs plot. The

equivalent local flow topologies for these data points are stable-node/saddle/saddle.

The intermediate principal eigenvalues of this acceleration rate-of-strain tensor are

negative for these data points.

Figure 4.20 shows that Qs is much larger than Qw at earlier times when the Hij

tensor is symmetric. These two invariants become comparable in magnitude as the

flow evolves. Figure 4.21 shows the contour plot of the joint pdf of Qw versus (R_- R).

The contour plot "explodes" from the origin and forms the characteristic "tear-drop"

shaped structure. This structure tilts towards the negative (R_ - R) axis at later

times.
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Figure 4.18: Time evolution of logarithmic contour plots of joint pdf of Q vs R for

H_j at (a) _- --- 0.0. (b) _- -- 1.32. (c) _- -- 2.65. (d) T - 5.30.
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Figure 4.19: Time evolution of logarithmic contour plots of joint pdf of Qs vs Rs for

Hij at (a) T = 0.0. (b) _"- 1.32. (c) T - 2.65. (d) T = 5.30.
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Figure 4.20: Time evolution of logarithmic contour plots of joint pdf of -Qs vs Q_

for gij at (a) _- = 0.0. (b) T ----1.32. (C) _"= 2.65. (d) _" = 5.30.
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Figure 4.21" Time evolution of logarithmic contour plots of joint pdf of Qw vs (Rs- R)

for Hij at (a) _-= 0.0 (b) _--- 1.32 (c) _-= 2.65 (d) _-= 5.30
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Figure 4.22: Logarithmic contour plots of joint pdf of Q vs R for (a) --(02p/i)XiOXj --

((_j/3)O2p/OXkCOXk). (b) vO2Aq/OxkOxk. T = 5.30.

4.4.1 Contribution from components of Hij

In addition to studying the time evolution of the invariants of H_j tensor, the rel-

ative contribution from the components of Hij tensor was also analyzed. The Hq

tensor consists of the trace-free pressure derivatives term and the third derivative of

the Aij, expressed in equation 2.5. Figure 4.22 compares the Q-R invariant plots

of the trace-free pressure cross-derivatives and the vO2Aq/OXkOXk tensors. The in-

variant plot for the pressure cross-derivatives indicates that this tensor is symmetric

(02p/Ox_cOxj = 02p/OxjOx_). Therefore, all data points lie below the discriminant

curve. The invariant plots of Q, versus R,, -Q, versus Q_, and Qw versus (Rs - R)

for this pressure term are redundant since Q = Qs, R = R_ and Qw = 0. On the

other hand, the Q-R invariant plot for the vi)2Aq/OxkOxk tensor shows that this is

the term that contributes all the "rotational" part of the Hq tensor.
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4.4.2 Effects of conditioning with local dissipation

How does the behavior of Hij tensor change when data points are conditioned with

different dissipation levels ? Figures 4.23 and 4.24 show the contour plots of the

joint pdf of Q versus R and Qs versus Rs when data points are conditioned with

local dissipation levels of 25%, 50% and 75% of the maximum local dissipation in

the flow. Data points with higher local dissipation tend to move closer towards the

left discriminant curve. These data points are observed to lie along this discriminant

curve when conditioned at the highest local dissipation levels.

4.4.3 Acceleration strain-rate distribution

The three eigenvalues of the symmetric part of the Hij tensor were determined and

sorted in descending order such that:

ah _> /3h _> 7_ (4.54)

These principal eigenvalues will be referred to as the acceleration strain-rates. The

probability density functions for these acceleration strain-rates (each normalized by

the magnitude of the intermediate acceleration strain-rate, [flh]) were determined

in the way described for the strain-rate distribution of Aij. Figure 4.25 shows the

probability density functions of the acceleration strain-rate distribution. When data

points are conditioned with local dissipation greater than 25% of the maximum local

dissipation in the flow, the intermediate acceleration principal eigenvalue is predomi-

nantly negative. These data points have preferred local acceleration strain topology of

stable-node/saddle/saddle. The distributions for ah and % remain relatively broad,

with small peaks at approximately 2.5 and -1.5 respectively.

4.4.4 Equivalent vorticity - acceleration strain alignment

An equivalent vorticity vector is defined from the components of the Hij tensor using

similar definitions for the true vorticity vector:

_hl = H32 - H23;
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Figure 4.23: Logarithmic contour plots of joint pdf of Q vs R for H_j. _- = 5.3. Data

conditioned at various levels of maximum local dissipation. (a) 0% (All data points).

(b) 25%. (c) 50%. (d) 75%.
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Figure 4.24: Logarithmic contour plots of joint pdf of Qs vs Rs for H_j. _- = 5.3.

Data conditioned at various levels of maximum local dissipation. (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.
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(4.55)

Figure 4.26 shows the cosine of the angle between the equivalent vorticity vector and

the three acceleration strain-rate directions. Both plots indicate that there is prefer-

ential alignment of the equivalent vorticity vector with the intermediate acceleration

strain-rate. This result corresponds to the earlier observation found for the vorticity-

strain alignment in the same flow. However, unlike the vorticity-strain alignment

results, the equivalent vorticity tends to non-align with ah. (Recall that the vorticity

vector tends to non-align with the most compressive strain, 7)-



120
CHAPTER 4. HOMOGENEOUS ISOTROPIC FLOW

0.03

0.02

0.0

/I

I

i l

/

i

• i

0:2 0:4 0:6 o:s -
cos 0

(a)

0,0

0.0_

002

%

I

/

/

ff

• /. J

• .•..'.. • • . !

• .-'• , ,.'-., t_

":"" -'.':-_." '. C.....'..'." .....

0.2 0.4 0.6 08

cos 0

(b)
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Chapter 5

Temporally evolving plane wake

5.1 Introduction

Sondergaard[30] performed a direct numerical simulation on a temporally evolving

plane wake to study the effects of the initial conditions on the evolution of the plane

wake; including the development of three-dimensionality, the mean flow, structure,

growth rate and the mean properties of the far-wake turbulence. To overcome the

limitations on the resolution due to restricted computer resources, Sondergaard em-

ployed a temporal formulation, where the spatially evolving flow is approximated by

a temporally evolving flow as it convects downstream. This formulation approximates

the view of an observer convecting downstream with the flow structures of interest.

Therefore, "time" in the temporal formulations becomes the measure of the level of

development of the flow instead of "space" in the case of spatial formulation. By

using temporal formulations, Sondergaard was able to achieve better resolution of

the smaller scales.

Certain assumptions are made in all temporal formulations. One of them is that

the stream-wise rate of change is small compared to the scale of the structures being

studied. Hence the mean flow may be approximated as being locally parallel. The

other assumption made is that the computational domain can safely be limited to

only a few large structures to achieve better resolution of the smaller scales. Doing

121
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so confines the development of the large scale motions to a computational box which,

at late times in the evolution, may only be a few wake widths long.

5.2 Brief description of the flow

The main intent of this work by Sondergaard was to examine the effect of the choice

of the initial conditions on the development of the incompressible plane wake. All the

flows were started from a laminar base flow. A small number of disturbance modes of

specific wavelengths including fundamental, subharmonic and sub-subharmonic were

then superimposed onto the base flow. These disturbance modes were chosen to be

the most unstable eigenfunctions as predicted by linear theory.

5.2.1 Numerical method

Calculating free shear flows using spectral methods in turbulent flows which are peri-

odic in two directions and have a non-periodic compact vorticity in the third direction

posed many challenges. Different approaches have been used to approximate the in-

finite direction and incorporating the spectral method at the same time, all with

well documented draw backs. Sondergaard avoided the draw backs encountered by

these previous methods with the use of an algorithm similar to the one presented

by Corral & Jim_nez[9] together with an unique way of dividing the non-periodic

infinite direction into three domains. One of the domains contained all the vorticity

in the flow while the other domains were vorticity free and extend from infinity to

meet the vorticity-containing domain at the boundaries from above and below. The

vorticity magnitude and vorticity gradient at the boundaries where the domains meet

were forced to be zero. In this way, the vorticity-containing domain can be treated

as fully periodic and can be solved with the standard pseudo-spectral technique. All

the quantities in the simulation have been normalized by the initial wake half width

and the initial free-stream velocity. A growing uniform grid was also used in the non-

periodic infinite direction to maximize the resolution while keeping the vorticity at
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the edges of the vorticity-containing domain small to satisfy the asymptotic matching

condition.

5.2.2 Initial condition

The initial condition for this time developing plane wake consists of a Gaussian mean

velocity profile in the stream-wise direction while the mean velocities in the other

two directions were set to zero. In this way, the only non-zero mean vorticity profile

is in the non-periodic infinite direction. Small two dimensional or three dimensional

disturbances which are periodic in the stream-wise and span-wise directions were then

added to the mean flow. These disturbances may be along any or all of the funda-

mental, subharmonic or sub-subharmonic stream-wise wavelength; with disturbance

phase angle ¢ if desired. The disturbance phase angle is defined with respect to the

two-dimensional fundamental disturbance, with ¢ = 27r represents a physical shift of

one fundamental wavelength. The amplitude of each disturbance eigenfunction was

chosen such that the initial magnitude was found to be small enough for the initial

wake growth to be within linear regime while at the same time large enough to allow

the wake to become non-linear without excessive computational resources.

5.3 Classification of local flow topologies of Aij

Flow simulations at two different Reynolds numbers were analyzed in this chapter.

The first flow is a three dimensional simulation with a stream-wise disturbance added

onto the subharmonic wavenumber in addition to the two dimensional disturbance

along the fundamental mode. The Reynolds number for this flow based on the initial

wake half width and the initial velocity defect is 346. This flow is identified as

wk346 in the analysis. The other flow is another three dimensional simulation with a

three dimensional disturbance along the subharmonic wavelength together with a two

dimensional disturbance along the fundamental wavelength. The Reynolds number

based on the same initial wake half width and initial defect velocity of this flow is

2768. This flow is identified as wk2768. Both flows have pairs of oblique waves with
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equal and opposite span-wise wavenumbers oriented 60 ° to the span-wise direction.

The choice of three-dimensional modes was motivated by the stability analysis which

suggested that wave pairs at near 60 ° to the span-wise direction are the most unstable

modes.

The instantaneous mean strain-rate is used to normalize the velocity and acceler-

ation gradients in the flow such that:

Aij Atij/fl; Hij , 2= =

sijsij /
(5.1)

A}j and H_j are the un-normaiized gradients obtained from the simulation.

Figure 5.1 shows the iso-contour surfaces for enstrophy density and discriminant

D = (27/4)R 2 + Q3 for wk346 at time t = 102.7. The free-stream is flowing along

the stream-wise x direction, as indicated in both plots. The vertical y-axis extends

to infinity in both directions to capture all the vorticity in the domain calculated.

The well defined span-wise rollers along the z-direction were depicted very nicely in

both iso-contour surfaces. Figures 5.2 to 5.5 show the time evolution contour plots

of the joint pdf of various invariants for wk346 at four different times. The basic

characteristics of these figures are very similar to those obtained by Sondergaard for

the same flow without the normalization shown in equation 5.1. The contour plot of

the joint pdf "explodes" from the origin at early time and peaks at time t = 102.7

before the magnitude of the gradients decreases as the flow approaches self-similar

regime. The joint pdf maintains a familiar "tear-drop" structure with high gradient

exhibiting a tendency towards the upper left quadrant of the Q-R plot (with local

topology of stable focus-stretching) and the lower right quadrant (with local topology

of unstable-node/saddle/saddle).

The initial shape of the joint pdf of the Qs-Rs invariant plot shows a very distinct

structure determined by the initial condition. However, this structure grows towards

the general shape observed in the later times as the flow evolves. Most data points

with high dissipation have a tendency towards the lower right quadrant of the Qs-Rs

plot, almost hugging the right discriminant curve.
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Figure 5.1: Iso-contour surfaces for wk346 at t = 102.7. (a) local enstrophy density

Ix] = 2.8. (b) local discriminant D = 5.0.
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The joint pdf of the -Qs-Q,_ plot shows that data points have comparable local

dissipation and local enstrophy density initially. However, the local enstrophy density

began to dominate as the flow evolved and developed well defined span-wise rollers

with relatively weak stream-wise stretching between the rollers. Once the rollers were

established, the three dimensional disturbances grew rapidly and the stream-wise

structures became more intense, under the influence of the straining field. There-

fore, the magnitude of the local dissipation and the local enstrophy density becomes

comparable again at the latest time shown.

The joint pdf of the Q_-Rs- R invariant plots show that data points with the high-

est local enstrophy density usually occur at regions with positive vortex-stretching

terms. These structures are very similar to those observed in the homogeneous

isotropic simulation.

Figures 5.6 to 5.9 show the time evolution of the joint pdf of various invariants

for flow wk2768 at two different times; after the flow has fully developed and is

approaching the asymptotic regime. The magnitude of the highest gradients and the

fraction of the flow containing the high gradient motions are larger in this higher

Reynolds number flow. Otherwise, the higher Reynolds number has very little effect

on the general behavior and the overall shape of the joint pdf. The development cycle

of exploding from the origin at initial condition and decaying as the flow approached

self-similar regime was concluded by Sondergaard to be independent of Reynolds

number.

5.4 Classification of local flow topologies of Hij

The Hij tensor for the wake flows is determined from equation 2.4, repeated here for

reference purposes:

OAij uk OAijOt + _ + AikAkj - Ak,_Amk = Hij (5.2)

Figures 5.10 to 5.13 show the joint pdf of the invariant plots of the Hij tensor for

wk346 at two different times. The flow is fully developed and begins to decay. The Q-

R plots show that most data points lie below the discriminant curve, indicating that
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Figure 5,2: Time evolution of logarithmic contour plots of joint pdf of Q vs R for

wk346, Aij. (a) t=22.8. (b) t=52.8. (c) t=102.7. (d) t=204.8.
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Figure 5.3: Time evolution of logarithmic contour plots of joint pdf of Qs vs Rs for

wk346, A_j. (a) t--22.8. (b) t=52.S. (c) t=102.7. (d) t-204.8
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Figure 5.4: Time evolution of logarithmic contour plots of the joint pdf of -Qs vs

Qw for wk346, Aij. (a) t=22.8. (b) t=52.8. (c) t=102.7. (d) t=204.8.
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Figure 5.6: Time evolution of logarithmic contour plots of joint pdf of Q vs R for

wk2768, A_j. (a) t=99.8. (b) t=194.6.
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Figure 5.7: Time evolution of logarithmic contour plots of the joint pdf of Qs vs Rs

for wk2768, Aij. (a) t=99.8. (b) t=194.6.
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wk2768, Aij. (a) t-99.8. (b) t=194.6.
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Figure 5.9: Time evolution of logarithmic contour plots of joint pdf of Q_ vs (R_ - R)

for wk2768, Aij. (a) t--99.8. (b) t--194.6.
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these data points have symmetrical Hij tensors. This is because when the Reynolds

number is relatively high, the viscous effect becomes relatively less significant when

compared to the effects of the pressure Hessian. Since the pressure Hessian tensor

is symmetric, the Hij tensor tends to be symmetric as well. Therefore, most of the

data points were observed to lie below the discriminant curve. At later time, the

magnitude of the gradients are much smaller with most data points close to the

origin. When examined closely (looking at the magnified plot), the data points in

the higher contour levels are observed to move towards the lower left quadrant of the

Q-R plot, exhibiting similar trend observed for the homogeneous isotropic flow.

The joint pdf of the Qs-Rs plots also exhibit trend of moving towards the lower left

quadrant. The higher contour levels are almost linear and parallel, showing strong

preference for topology of stable-node/saddle/saddle. Data points with high Qs(Hij)

are not necessary the same data points that are found in the high local dissipation

region, indicated by high Qs(Aij). The effect of local dissipation on the behavior of

the Hij tensor will be illustrated in the later subsections. Figure 5.12 shows that data

points in wake flows have significantly higher equivalent local dissipation compare

to the equivalent local enstrophy density. The structure formed by the joint pdf of

Qw-(Rs - R) is also similar to the "tear-drop" shape.

5.4.1 Effects of Reynolds number

Figures 5.14 to 5.17 show the Hij invariant plots of the higher Reynolds number

simulation wk2768. Data for this simulation were selected at close to the evolution

times for wk346 for comparison purposes. The shapes of the joint pdf of various

invariants remain very similar to those of wk346. The effect of higher Reynolds

number increases the magnitude of the highest gradients, as reflected by the increase

in axis scales.

5.4.2 Effects of conditioning with local dissipation

The behavior of the Hij tensor for data points that reside in different local dissipa-

tion regions are shown in figures 5.18 to 5.25 for both flows. These data points are
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Figure 5.10: Time evolution of logarithmic contour plots of joint pdf of Q vs R for

wk346, Hij. (a) t=102.7. (b) t=204.8. (c) same as (b), with magnified axis scales.
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Figure 5.11" Time evolution of logarithmic contour plots of joint pdf of Qs vs Rs

wk346_ Hij. (a) t=102.7. (b) t=204.S. (c) same as (b), with magnified axis scales.
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Figure 5.12: Time evolution of logarithmic contour plots of joint pdf of -Qs vs Qw

for wk346, H O. (a) t=102.7. (b) t-204.8.
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Figure 5.13: Time evolution of logarithmic contour plots of joint pdf of Qw vs (Rs- R)

for wk346, H_j. (a) t=102.7. (b) t=204.8.
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Figure 5.14: Time evolution of logarithmic contour plots of the joint pdf of Q vs R

for wk2768, Hij. (a) t=99.8. (b) t--194.6.
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Figure 5.15: Time evolution of logarithmic contour plots of joint pdf of Qs vs Rs for

wk2768, Hij. (a) t=99.8. (b) t=194.6.
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Figure 5.16: Time evolution of logarithmic contour plots of joint pdf of -Qs vs Q_

for wk2768, Hij. (a) t=99.8. (b) t=194.6.
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Figure 5.17: Time evolution of logarithmic contour plots of joint pdf of Q_ vs (R_-R)

for wk2768, H_j. (a) t=99.8. (b) t=194.6.
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conditioned at different levels of local dissipation. The levels vary from 0% of the

maximum local dissipation (all data points are included) to 75% of the maximum

local dissipation in the flow. As the conditioning levels increases, the magnitude of

the invariants of Hij are observed to decrease very rapidly. This observation indi-

cates that the magnitude of the H 0 tensor gets smaller when the conditioning level

of the local dissipation increases. This conclusion is arrived from the results in fig-

ure 5.10(a), which shown that most Hij tensor is symmetric since most of the data

points lie below the discriminant curve. From the definition of Q(Hij), when H_j

tensor is symmetric, then

Q(H j) g kHk ~ H  Hik ~ 2 (5.3)

When data is conditioned at higher local dissipation levels, Q(Hij) is very small, as

observed in figures 5.18 to 5.25. Hence, magnitude of Hij gets smaller when data is

conditioned at higher local dissipation levels.

The result that the magnitude of Hij tensor is small at high local dissipation

regions is very interesting. This result indicates that in regions of high local dissipation

(i.e. high velocity gradients), the magnitude of Hij can be small. In these regions,

the analytical solution of the Restricted Euler model may be applicable.

5.4.3 Effects of conditioning with local enstrophy density

The behavior of the Hij tensor for data points with different local enstrophy density

are shown in figures 5.26 to 5.33. As the conditioning levels increases from 0% to

75% of the maximum local enstrophy density, the magnitudes of the invariants of

Hit are not observed to get smaller accordingly. Instead, data points with high local

enstrophy density levels correspond to high gradients in all the plots shown. This

result indicated that the magnitude of H_ is small only in the high local dissipation

regions, but not necessary in the high local enstrophy density regions.
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Figure 5.18: Logarithmic contour plots of joint pdfofQ vs R for wk346, Hij. t=102.7.

Data conditioned at various levels of maximum local dissipation. (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.



146 CHAPTER 5. TEMPORALLY EVOLVING PLANE WAKE

0.0

Qs(Hij)

-50.0
-150.0

I

Rs(Hij) 150.0

0.0

Qs_ij)

-50.0_/_ =1 _ i i i i i\ i

-150.0 Rs(Hij) 150.0

(a) (b)

0.0

Qs(Hij)

-50.0 i
-150.0 Rs(Hij) 150.0

0.0

Qs(I-lij)

-50.0 =
- 150.0 Rs(Hij) 150.0

(c) (d)

Figure 5.19: Logarithmic contour plots of joint pdf of Qs vs Rs for wk346, H_j.

t---102.7. Data conditioned at various levels of maximum local dissipation. (a) 0%

(All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.20: Logarithmic contour plots of joint pdf of Q vs R for wk346, H_j. t--204.8.

Data conditioned at various levels of maximum local dissipation. (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.21: Logarithmic contour plots of joint pdf of Qs vs Rs for wk346, Hij.

t=204.8. Data conditioned at various levels of maximum local dissipation. (a) 0%

(All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.22: Logarithmic contour plots of joint pdf of Q vs R for wk2768, Hij. t=99.8.

Data conditioned at various levels of maximum local dissipation. (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.23: Logarithmic contour plots of joint pdf of Qs vs Rs for wk2768, t=99.8.

Data conditioned at various levels of maximum local dissipation. (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.24: Logarithmic contour plots of joint pdf of Q vs R for wk2768, Hij.

t=194.6. Data conditioned at various levels of maximum local dissipation. (a) 0%

(All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.25: Logarithmic contour plots of joint pdf of Qs vs Rs for wk2768, H,j.
t-194.6. Data conditioned at various levels of maximum local dissipation. (a) 0%

(All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.26: Logarithmic contour plots of joint pdf of Q vs R for wk346, Hij. t=102.7.

Data conditioned at various levels of maximum local enstrophy density. (a) 0% (All

data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.27: Logarithmic contour plots of joint pdf of Qs vs Rs for wk346, H O.

t=102.7. Data conditioned at various levels of maximum local enstrophy density.

(a) 0% (All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.28: Logarithmic contour plots of joint pdf of Q vs R for wk346, Hij. t--204.8.

Data conditioned at various levels of maximum local enstrophy density. (a) 0% (All

data points). (b)25%. (c)50%. (d)75%.
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Figure 5.29: Logarithmic contour plots of joint pdf of Qs vs R, for wk346, H_j.

t=204.8. Data conditioned at various levels of maximum local enstrophy density.

(a) 0_ (All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.30: Logarithmic contour plots of joint pdf of Q vs R for wk2768, Hij. t-99.8.

Data conditioned at various levels of maximum local enstrophy density. (a) 0% (All

data points). (b) 25%. (c) 50%. (d) 75_.
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Figure 5.31: Logarithmic contour plots of joint pdf of Q_ vs Rs for wk2768, H_j.

t-99.8. Data conditioned at various levels of maximum local enstrophy density.

(a) 0% (All data points). (b) 25%. (c) 50_. (d) 75%.
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Figure 5.32: Logarithmic contour plots of joint pdf of Q vs R for wk2768, Hij.

t=194.6. Data conditioned at various levels of maximum local local enstrophy density.

(a) 0% (All data points). (b) 25%. (c) 50%. (d) 75%.
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Figure 5.33: Logarithmic contour plots of joint pdf of Q_ vs R_ for wk2768, Hij.

t=194.6. Data conditioned at various levels of maximum local (a) 0% (All data

points). (b) 25%. (c) 50%. (d) 75%.
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5.4.4 Acceleration strain-rate distribution

It was observed by Sondergaard that when the strain-rates of the velocity gradient

tensor were sorted in descending order a >_ _ >_ 7; the ratio of these strain-rates was

found to be a :/_ : 7 _ 1.5 : 1.0 : -2.5 for data points conditioned in the high local

dissipation regions. Positive _ indicates that the local rate-of-strain topology is of

the type unstable-node/saddle/saddle. This distributions is insensitive to Reynolds

number and holds for all the three-dimensional wakes simulated by Sondergaard.

Defining the principal eigenvalues of the symmetric part of the Hij tensor as the

acceleration strain-rates, and sort them in descending order such that o_h ______h --_ _h,

the acceleration strain-rates distribution was also studied in a similar fashion.

The probability density functions of these principal eigenvalues for wk346 and

wk2768 are shown in figures 5.34 to 5.37. All the eigenvalues have been normalized

by the magnitude of the intermediate principal eigenvalue I_hl SO that the normalized

intermediate principal eigenvalue can only take on values of _1.0

Two different plots are shown in each figure. The first plot includes all the data

points in the flow while the other include points conditioned with local dissipation

higher than 25% of the maximum local dissipation in the flow. More negative inter-

mediate principal eigenvalue _h than the positive ones are observed in the distribution

functions, indicating that the local flow topology of stable-node/saddle/saddle is pre-

ferred to the unstable-node/saddle/saddle. The distribution for ah and _h are almost

symmetrical on both sides of the distribution functions. No significant peaks are ob-

served for the broad (_h and 7h distributions. Similar results are observed for flows at

different times and Reynolds numbers.

5.4.5 Equivalent vorticity-acceleration strain alignment

Sondergaard reported preferential alignment of the vorticity vector with the inter-

mediate rate-of-strain tensor direction and non-aligned with the most compressive

rate-of-strain direction by studying the alignment probability density function of the

alignment angle between the vorticity vector with the three principal strain-rates

direction.
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To compare the results between the velocity gradient tensor and the acceleration

gradient tensor, similar studies were done for the Hij tensor by studying the align-

ment angle between the equivalent vorticity vector (as defined in equation 4.55) with

the acceleration strain-rates (ah > 13h > _h). Figures 5.38 to 5.41 plot the probability

density functions of the cosine of the alignment angle _ between the equivalent vor-

ticity with the three acceleration rate-of-strain directions of the Hij tensor for both

wk346 and wk2768. _ is any one of the three alignment angles between the equiv-

alent vorticity and the acceleration rate-of-strain direction. The density functions

do not show any significant difference between o_h and % in all the plots. However,

there is a strong preference for the equivalent vorticity vector to align with the in-

termediate rate-of-strain, j3h direction. This tendency becomes more pronounced (as

indicated by the increased density functions levels) when data are conditioned with

local dissipation of more than 25% of the maximum local dissipation in the flows.

This observation appears to be independent of Reynolds number.
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Chapter 6

Conclusions

The Lagrangian behavior of the velocity gradient tensor was studied using results

from three direct numerical simulation of turbulent flows: an inviscid calculation of

interactions between two vortex tubes, a homogeneous isotropic flow and a temporally

evolving planar wake. Analysis of these flows revealed strong preference for the inter-

mediate principal eigenvalue of the rate-of strain tensor to be positive, with preferred

local strain topology of unstable-node/saddle/saddle. There is also a preference for

the vorticity vector to align with this intermediate principal eigenvector. These prefer-

ences were found to be stronger when data were conditioned at higher local dissipation

regions. All these observations support earlier findings of other direct numerical sim-

ulated flows, including homogeneous isotropic flow and homogeneous shear flow[l],

mixing layer[31], channel flow[2] and turbulent boundary layer[32]. These flows are

very different in terms of large-scale motions and Reynolds numbers, indicating that

these observations may be universal characteristics that are flow-independent.

A model of the evolution of Aij based on the solution of a Restricted Euler equa-

tion contained asymptotic behavior consistent with these observations. This solution

was compared with results obtained from an incompressible Euler calculation of two

interacting vortex tubes. A coherent structure within this inviscid calculation was

observed to exhibit characteristics predicted by the Restricted Euler model. This

coherent structure evolved with the flow as the calculation approached singularity,

always near the peak vorticity in the flow. Invariants of data points within this
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structure have linear relationships of the form:

(6.1)

(6.2)

ha was concluded to be the most positive principal eigenvalue of the velocity gradient

tensor while As was the intermediate principal eigenvalue of the rate-of-strain tensor.

Both Aa and As were found to be 0.40. The invariants of the velocity gradient tensor

for data within this structure have relationships similar to those predicted by the

Restricted Euler model.

The tensor Hij, which is the anisotropic part of the acceleration gradient tensor,

was studied in two different viscous flows: a relatively low Reynolds number decaying

homogeneous isotropic flow in a periodic box, and a temporally evolving plane wake

at two different Reynolds numbers. The magnitude of the invariants of the Hij tensor

of the homogeneous isotropic flow increased as the flow decayed. The intermediate

acceleration strain-rate in this flow inclined to be negative, with a local strain topology

of stable-node/saddle/saddle. Furthermore, the equivalent vorticity vector preferred

to align with this intermediate acceleration strain-rate direction.

Behavior of acceleration gradient tensor of a temporally evolving planar wake

at two different Reynolds numbers was also studied. The intensity of the highest

gradients increased when the Reynolds number of this flow was higher. Otherwise, the

shapes of the contour plots of the joint probability density function of the invariants

of H_j remained very similar. The H O tensor was found to be nearly symmetric in this

moderately high Reynolds number simulation. The intermediate acceleration strain-

rate also inclined to be negative, with local strain topology stable-node/saddle/saddle.

A strong preferential alignment between the equivalent vorticity and the intermediate

acceleration strain-rate direction was also observed. The most interesting result from

the study of this flow was that the magnitude of Hq was very small when data were

conditioned at higher local dissipation regions. This result was not observed for the

relatively low Reynolds number simulation of homogeneous isotropic flow. All the

results obtained for the wake simulation were nearly the same at the two Reynolds

numbers studied.



Appendix A

Velocity gradient tensor with

random components

A velocity gradient tensor Aij needs to be constructed such that its components

are obtained from a random number generator with mean E(x) = 0.0 and variance

a2 = 1.0. To make this velocity gradient tensor more "realistic", the tensor needs to

be forced to satisfy the continuity constraint for incompressible flow. Furthermore, in

the case of isotropic flow, the volume integral of the second invariant Q must be zero

due to the balance of the pressure gradients acting on the surface of a control volume.

Therefore, the constructed Aq would have to satisfy the condition that E(Q) = 0.0

as well.

To satisfy both conditions, the velocity gradient tensor Aij is constructed from

the sum of a symmetric tensor Sij and an anti-symmetric tensor W_j such that Aij =

Sij-_ Wij. The components of Sij and Wij tensors are obtained from a random number

generator, which generates random numbers x with mean E(x) = 0.0 and variance

a 2 = 1.0. Forcing the trace of the Sij tensor to zero, the components of Sij are:

1

$11 = zl - _(xl + x2 + z3),
1

$22 = z2 - _(zl + z2 + z3),
1

S3z = z3 - _(zl + z2 + z3),
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S12 : $21 : X4_

$13 = $31 = x5,

$23= S_2= x6.

Similarly, the components of the anti-symmetric tensor W_j are:

_l=W22=W33=O.O,

(A.1)

W12 _----W21 --'--X7_

W13 = -W31 = x8,

W23 = -W32 = x 9. (A.2)

xl,x2,..., x9 are nine different random numbers obtained from the random number

generator. The Aij tensor constructed this way satisfies the continuity constraint.

The second condition that the volume integral of Q must be zero can be satisfied

by forcing the expected value of Q to zero, i.e. E(Q) -- 0.0. Noting that Sij tensor is

symmetric and W{j tensor is anti-symmetric,

Q = -1AimAm_2 = -1S_mS'" + 1W_"'Wim2 (A.3)

Put

Then

E(e): + =0.0

E(S_mS_,_) - E(W_W,_) = O.O.

(A.4)

(A.5)

Now_

E(S,..S,..)= E(S_,,+ S_,,+ Sf,+ S_,+ S_,+ S_+ S_,+ S],+ S_,)

= E(S_,) + E(S_2 ) + E(S_3 ) + E(S_,) +... + E(S_3 ).

For the case when E(x) -- 0.0,

o2 = E(z2)_ E(x)2 = E(z2), (A.6)
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and, for independent variables x,

E(xixj) = E(xi)E(xj) = 0.0; i _ j. (A.7)

Therefore, from E(x_) = E(x_) = E(x_) = cre = 1.0, and E(xlx2) = E(xlx3) =

E(x2x3) = 0.0, then

E(S_mS,,,) = S_2. (A.S)

To make E(Q) = 0.0, the variance of every component of Wij tensor needs to be

modified by a factor a, such that E(Q) = E(SimSim - WimWim) = 0.0. Therefore,

8a 2 - 6a2 a 2 = O.O =_ a 2- 4
3 (A.9)

Finally, the velocity gradient tensor A 0 with random number components which

satisfies both the continuity and E(Q) = 0.0 constraints is obtained by adding S_j

and Wij tensors together, such that:

1

Sn = zl - 5(zl + z2 + x3),
1

S22 = z2 - _(z_ + z2 + z3),
1

S_3= x3 - _(zl + z2 + z3),

and,

$12 = $21 -- x4_

S13 _ $31 m_ x5 '

$23= $32 = z6.

Wll =W22 =W33 =0.0,

(A._0)

W12 : -W21 _- _x7,

W13 = -W31 = V_X8,

W23= -W32 = V/-4/3zg. (A.11)
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Appendix B

De-aliasing technique

Consider a three-dimensional convolution sum:

_(k) =

kc is the Nyquist "frequency".

_(p)_(q); p+q =k. (B.1)

IP],lq]<kc

This alias-free sum can be evaluated using only two

sets of grids as well as truncating wave-vector modes outside a specified range, as

described by Orszag[23]. Two sets of grids _(j) and _(j) are selected such that:

7r

_(j) = -_(jl,j2,j3); 0 _< jm < 2kc, m = 1,2,3.

_T 1 . 1 1

x(j)=_-_c(Jl+5,32+_,J3+5); 0<:jm<2kc, m=1,2,3. (B.2)

The velocities represented on these two sets of grid points are:

fi(j) = _ _(klexp[ik. _(j)], (8.3)
Jkl<kc

£(j) - _ _(k) exp[ik. _(j)], (B.4)

Ikl<kc

_(j) = _ _(k) exp[ik- _(j)], (B.5)
IkI<kc

O(j) = _ 0(k)exp[ik-_(j)]. (B.6)
Ikl<ko

The transforms of both fi'_.v and _ ."--_are:

1

_(k) = (2kc)S _ _-_exp[-ik-2(j)]; (B.7)
O__j <2kc
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k3

k2

P
kl

Figure B.1: Region of retained Fourier modes defined by D.

Therefore,

1

_(k)-(2kc)3 Z: _-_exp[-_k._(j)]. (B.8)
0 _j <_ 2kc

[_(k) + z_(k)] = z_(k) + _ _(k + 2ken); (Ikl < k_). (B.9)
n

The term involving n represents the spurious aliasing errors. Patterson[24] has shown

that only two of the three components are independently ±1 while the remaining one

is zero. Consequently, equation B.9 involves aliasing only to the extent of wave-vectors

that are "doubly aliased".

To remove the doubly-aliased terms, Orszag[23] considered a region D such that

fi(k) = _(k) = 0 for k outside the region:

D = _ Ik_l < k_ a = 1,2,3 (8.10)

/
This inequality defines the region D bounded by an 18-sided polyhedron, as shown

in the perspective sketch of figure B.1. If k is outside the region D, then the doubly-

aliased terms in equation B.9 must be identically zero since there are no nonzero



179

componentsof fi(p), _(q) that cancontribute to _b(k+2kcn)suchthat k+2kcn = p+q

with k,p, q E D. Therefore, if the spectral truncation is made so that the only

excitable Fourier modes lie within the region D, then three-dimensional alias-free

convolution sums are computable exactly on just the two sets of grids 2(j) and 2(j).
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Appendix C

Energy and velocity derivatives

spectra

The energy spectrum for the homogeneous isotropic flow was determined and shown

in figure C.1 (a). This energy spectrum is plotted against the magnitude of the three

dimensional wave number vector, k. Both the energy spectrum E(k) and the wave

number k are defined as:

E(k) = _l(k)2+ _2(k)2+ u3(k)2, (c._)

and

k = v/k_+ k_+ k_. (c.2)

kl, k2 and k3 are the wave numbers in the three spatial directions. The Kolmogorov

k -5/3 scaling was superimposed onto the same plot, for comparison. Only a very

small portion of the energy spectrum exhibits the k -s/3 scaling, indicating that this

low Reynolds number simulation is not close to the "turbulent" flow. However, the

spectrum shows that the grid size used in the simulation is sufficient to resolve all the

wave numbers.

In calculating the velocity gradient tensor, Aij -- OuJOxj, there is a concern that

the grid size used in the simulation may not be able to resolve this velocity gradient

at higher wave numbers. To validate the resolutions, the spectrum of Aij, denoted as

EA(k), was determined in a similar way as the energy spectrum with EA(k) defined
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as:

EA(k) = All(k) 2 + A22(k) 2 + A33(k) 2. (C.3)

The EA(k) spectrum is plotted in figure C.l(b). This spectrum shows that the grid

size used in the simulation is able to resolve the higher wavenumbers of the velocity

derivatives.

Higher derivatives of the velocity fields were required in calculating the Hij tensor

from either equation 2.4 or 2.5. To get a "feel" for the resolution of these higher

velocity derivatives, the spectra for OAij/Ox,_ and c32Aij/c3x,.nOx,_ were determined

in a similar way as the energy spectrum. These spectra are defined as:

E,_A(k)_ OAll 0A22. _ 0A33ox, + (k) + (k)2. (c.4)

02A33
E_2A(k)-'- 02All (k)2+ 02A22 (k)2+ (k)2; m= 1,2,3. (C.5)

Ox,_Ox,_ OxmOx,,, OxmOxm

As the derivatives get higher, the higher wave numbers become more dominant since

these derivative were obtained spectrally by multiplying the wave numbers to the

velocity field. At higher wave numbers, the "energy" of these derivatives become

much more significant compared to those obtained for the energy spectrum, as seen

in the spectra shown in figure C.2. The abrupt cut-off of the spectra at the maximum

k was due to the range of the wave numbers used in the simulation to remove aliasing

errors, as explained in Appendix B.
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Figure C.I: Energy and velocity gradient spectra for homogeneous isotropic flow at

_- = 5.30. 1" indicates the maximum wave number, kma_, resolved in the simulation.

(a) --: energy spectrum. ---: Kolmogorov k-s� a scaling. (b) Aij spectrum.
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Appendix D

Acceleration gradient tensor of

Burgers vortex

Assuming a steady Burgers vortex with velocity field ui(x, y, z):

1
_1= -_x - Re y(1- e-_)/T2

z
(D1)

1

_ = -_y + Re x(1 - e-_)/T2. (D.2)

u3 = z. (D.3)

x, y and z are the three Cartesian coordinates with z being the vertical axis and

r = _. Re = F/Srv is the Reynolds number where F and v are the circulation

and the viscosity of the flow respectively.

D.1 The velocity gradient tensor Aij

From the velocity field ui(x,y, z), the velocity gradient tensor Aij -= COUi/C_Xj was

obtained by taking the corresponding derivatives of ul, us and u3 with x, y and z:

1 [2xY(l_e__:_r2e__2)] (D.4)An = -_ + Re I r 4

A12 = Re (1 - e -r:) + Re [2Y---_2(1 - e -r2 - r2e-r2)]. (D.5)
r 2 [ r 4
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Re L[2X2(lr4- e-r_ - _2_-_)].A21-- _-_-(1- e -r_) - Re

1 Re [2xy , e__2 r2e__2)]A22 = _ L-_( 1 - _ J

A33 = 1.0.

A13 = A2a -- A3I = An2 - 0.0.

Notice that the Aij tensor is not symmetrical since A12 _= Am.

(D.6)

(D.7)

(D.S)

(D.9)

Equations 1.16 to

1.18 give the definitions of the various invariants of the A,j tensor for incompressible

flow. Since the first invariant P is zero for all incompressible flow, the second and

third invariants were determined to be:

3 Re2[r__ ( 1 _Q(Ai_) =

1 [_(R(A_j) = -_ + Re 2 1 -

e -_2 - r2e-r2) 2 - e-2_2]. (D.10)

e -_2 - r2e-_2) 2 - e-2_2]. (D.11)

D.2 The acceleration gradient tensor, Hij

The definition of the acceleration gradient tensor, H_j was derived in equation 2.4. In

the case of a steady Burgers vortex,the expression for the H_j tensor can be simplified

to:

uk OA,j (AkmAmk ) _. (D. 12)

f*

Hi_ = _ + A_kAkj -

The various components of the Hij tensor were determined with the help of a sym-

bolic mathematical software, MAPLE[6]. With the various derivatives involved, the

expressions of the components of the Hij tensor are very complex. However, employ-

ing the fact that the Burgers vortex is an axisymmetric flow, these expressions could

be simplified by studying only the case along any radial r-axis. Assuming x = r and

y - 0, the various components of the H_j tensor are:

H_ - l (-28Re2+56RJ e-r2+ 32Re2r2e-r_ _ 28Re 2 e-2r2 _ 32Re2 _.2e-2r2 __37.4)/r 4"

(D.13)

H12 = Re e -_2. (D.14)
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H21= Re e-r2(-1 + 2_2). (D.15)

1 (20Re2 _40Re2 e_r2 _ 16Re2r2e_r_ +20Re2 e_2_2 + 16Re2r_e_2r2 +3r4)/r4"
H22 - 12

(D.16)

H33 = - _ (4Re 2 - 8Re2 e -_2 - 8Re2r2e -_2 + 4Re2 e -2_ + 8Re2r2e-2_2 - 3r 4)/r 4. (D. 17)
u

H13 --/-/23 -----/-/31 ----H32 -- 0.0. (D.18)

Notice that the H_j tensor is again not symmetrical since H12 -_ H21. The invariants

of Hij have also been calculated using MAPLE. The first invariant P(Hiy) is again

zero. The expressions for the second and third invariants are:

Q(Hij) = -2Re 2 e-Z_2r2 - 1-"63+ Re 2 e_2r2 _ Re2(1 -r 2e-_2)e -_2 +

1/2C2 - 16/3Re 4(1 - e -r:)2e-2_2
+

7.4

28 Re4(1 - e-_2)3e -_2 13 Re4(1 - e-r2) 4

3 r 6 3 r 8
(D.19)

where •

Re2e-2_2r2321 _Re2e_2_2+_Re4e_3_2(1_e__2)+

(-¼ne_(1 - e-_)e-_ _ _ _ e-_r__Re (1 - e -_2) - 4- _C2 + 2C1_C1) +
r 2 r 4

[- _Re4 (1 _ e-"_)3e-__ _ _Re2(1 _ e-_'2)e-r_ (_ 2C2 ÷ ___C1 ) _

_Re2(1 - e-_)e-_2 (5C2 + _-_C_) + 8Re2(1 - e-r2)e-_2 (- _C, +

+

[__5C2(-_C25 + _Cl)- 222_4 Re6(17 -e-r2)4e-2r2 -_- "_--_Re11 4 (1 -- e-r2) 4 +

_C2( 2 C 16 7 C 7 9C1)]/r8 +_+ -_o,) - _ _(--dc_ +
92 Re6(1 - e-_2)Se -r_ 70 Re_(1 - e-_2) 6

9 r 1° 27 r 12
(D.20)

C1 = Re4(1 - e-r_)2e -2_,

C2 = Re_(1 - e-"_) 2

(D.21)

(D.22)
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There is an apparent singularity at r - 0 since both invariants Q and R involve

terms with denominator containing r raises to various powers. This apparent singu-

larity was removed using L'Hospital's rule, giving:

Q(Hij)lr=o = 3 + 1Re2-2 _ Re4"

1 5Re2_ _Re4 _ 2Re6.R(HiJ)I"=°- 32 8 27

(D.23)

(D.24)

D.3 Behavior of Q(Hij) and R(Hij) with r

Figure D.l(a) shows the variations of Q(Hij)/Re 4 with r for Reynolds numbers of

2, 5, 10, 20 and 50. Q(Hij) is normalized by Re 4 so that a self-similar solution for

Q(Hi3)/Re 4 is obtained for large Reynolds numbers (Re >_ 50). A self-similar solution

is also obtained for R(Hij)/Re 6 when the Reynolds number is large, as shown in

figure D.l(b).

Figure D.2 plots Q(Hij)/Re 4 against R(Hij)/Re 6, with the discriminant curve

D = (27/4)R 2 + Q3 = 0.0 superimposed onto the plot. The self-similar solution for

large Reynolds number begins on a point that lies exactly on the discriminant curve

with Q(Hij)/Re 4 -- -0.333 and R(Hq)/Re 6 - -0.074 at r = 0.0. As r increases,

this solution osculates the other discriminant curve at Q(Hq)/Re 4 - -0.117 and

R(Hij)/Re 6 = 0.015 before approaching the origin.
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Figure D.I: Normalized Q(Hij) and R(Hij) versus r. ,,..:Re = 2. ...:Re = 5.

.... :Re = 10. ---:Re = 20. --:Re = 50. (a) Q(Hij)/Re 4 vs r. (b) R(Hij)/Re 6 vs r.
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Figure D.2: Q(Hi_)/Re 4 versus R(H_j)/Re 6. ...:Re = 2....:Re = 5..-.-:Re = 10,

---:Re = 20. --:Re = 50.
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